BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8075342)

  • 1. Photoactivation of rhodopsin involves alterations in cysteine side chains: detection of an S-H band in the Meta I-->Meta II FTIR difference spectrum.
    Rath P; Bovee-Geurts PH; DeGrip WJ; Rothschild KJ
    Biophys J; 1994 Jun; 66(6):2085-91. PubMed ID: 8075342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin activation affects the environment of specific neighboring phospholipids: an FTIR spectroscopic study.
    Isele J; Sakmar TP; Siebert F
    Biophys J; 2000 Dec; 79(6):3063-71. PubMed ID: 11106612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR spectroscopy reveals microscopic structural changes of the protein around the rhodopsin chromophore upon photoisomerization.
    Kandori H; Maeda A
    Biochemistry; 1995 Oct; 34(43):14220-9. PubMed ID: 7578021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoactivation of rhodopsin causes an increased hydrogen-deuterium exchange of buried peptide groups.
    Rath P; DeGrip WJ; Rothschild KJ
    Biophys J; 1998 Jan; 74(1):192-8. PubMed ID: 9449322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels.
    Yang K; Farrens DL; Altenbach C; Farahbakhsh ZT; Hubbell WL; Khorana HG
    Biochemistry; 1996 Nov; 35(45):14040-6. PubMed ID: 8916888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation.
    Rath P; DeCaluwé LL; Bovee-Geurts PH; DeGrip WJ; Rothschild KJ
    Biochemistry; 1993 Oct; 32(39):10277-82. PubMed ID: 8399169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disulfide bond exchange in rhodopsin.
    Kono M; Yu H; Oprian DD
    Biochemistry; 1998 Feb; 37(5):1302-5. PubMed ID: 9477956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state.
    Davidson FF; Loewen PC; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4029-33. PubMed ID: 8171030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational spectrum of the lumi intermediate in the room temperature rhodopsin photo-reaction.
    Ujj L; Jäger F; Atkinson GH
    Biophys J; 1998 Mar; 74(3):1492-501. PubMed ID: 9512045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin.
    Loewen MC; Klein-Seetharaman J; Getmanova EV; Reeves PJ; Schwalbe H; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4888-92. PubMed ID: 11320239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing intramolecular orientations in rhodopsin and metarhodopsin II by polarized infrared difference spectroscopy.
    DeLange F; Bovee-Geurts PH; Pistorius AM; Rothschild KJ; DeGrip WJ
    Biochemistry; 1999 Oct; 38(40):13200-9. PubMed ID: 10529192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Cai K; Khorana HG; Hubbell WL
    Biochemistry; 1999 Jun; 38(25):7931-7. PubMed ID: 10387035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier transform infrared spectroscopy indicates a major conformational rearrangement in the activation of rhodopsin.
    Garcia-Quintana D; Francesch A; Garriga P; de Lera AR; Padrós E; Manyosa J
    Biophys J; 1995 Sep; 69(3):1077-82. PubMed ID: 8519961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187.
    Karnik SS; Khorana HG
    J Biol Chem; 1990 Oct; 265(29):17520-4. PubMed ID: 2145276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agonists and partial agonists of rhodopsin: retinal polyene methylation affects receptor activation.
    Vogel R; Lüdeke S; Siebert F; Sakmar TP; Hirshfeld A; Sheves M
    Biochemistry; 2006 Feb; 45(6):1640-52. PubMed ID: 16460011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments.
    Kuwayama S; Imai H; Morizumi T; Shichida Y
    Biochemistry; 2005 Feb; 44(6):2208-15. PubMed ID: 15697246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tertiary interactions between transmembrane segments 3 and 5 near the cytoplasmic side of rhodopsin.
    Yu H; Oprian DD
    Biochemistry; 1999 Sep; 38(37):12033-40. PubMed ID: 10508407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.