BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8075342)

  • 21. Function of the farnesyl moiety in visual signalling.
    McCarthy NE; Akhtar M
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):163-71. PubMed ID: 10727415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoreactions of metarhodopsin III.
    Vogel R; Lüdeke S; Radu I; Siebert F; Sheves M
    Biochemistry; 2004 Aug; 43(31):10255-64. PubMed ID: 15287753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A structural role for Asp83 in the photoactivation of rhodopsin.
    Breikers G; Bovee-Geurts PH; DeCaluwé GL; DeGrip WJ
    Biol Chem; 2001 Aug; 382(8):1263-70. PubMed ID: 11592408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural constraints imposed by a non-native disulfide cause reversible changes in rhodopsin photointermediate kinetics.
    Lewis JW; Szundi I; Kliger DS
    Biochemistry; 2000 Jul; 39(27):7851-5. PubMed ID: 10891063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural comparison of metarhodopsin II, metarhodopsin III, and opsin based on kinetic analysis of Fourier transform infrared difference spectra.
    Klinger AL; Braiman MS
    Biophys J; 1992 Nov; 63(5):1244-55. PubMed ID: 1477276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The transmembrane 7-alpha-bundle of rhodopsin: distance geometry calculations with hydrogen bonding constraints.
    Pogozheva ID; Lomize AL; Mosberg HI
    Biophys J; 1997 May; 72(5):1963-85. PubMed ID: 9129801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state.
    Lin SW; Sakmar TP
    Biochemistry; 1996 Aug; 35(34):11149-59. PubMed ID: 8780519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FTIR study of the photoreaction of bovine rhodopsin in the presence of hydroxylamine.
    Katayama K; Furutani Y; Kandori H
    J Phys Chem B; 2010 Jul; 114(27):9039-46. PubMed ID: 20557105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation.
    Fritze O; Filipek S; Kuksa V; Palczewski K; Hofmann KP; Ernst OP
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2290-5. PubMed ID: 12601165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR.
    Klein-Seetharaman J; Getmanova EV; Loewen MC; Reeves PJ; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13744-9. PubMed ID: 10570143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water and peptide backbone structure in the active center of bovine rhodopsin.
    Nagata T; Terakita A; Kandori H; Kojima D; Shichida Y; Maeda A
    Biochemistry; 1997 May; 36(20):6164-70. PubMed ID: 9166788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y; Shichida Y; Kandori H
    Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhodopsin photoproducts in 2D crystals.
    Vogel R; Ruprecht J; Villa C; Mielke T; Schertler GF; Siebert F
    J Mol Biol; 2004 Apr; 338(3):597-609. PubMed ID: 15081816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants.
    Hwa J; Klein-Seetharaman J; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4872-6. PubMed ID: 11320236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detecting molecular interactions that stabilize native bovine rhodopsin.
    Tanuj Sapra K; Park PS; Filipek S; Engel A; Müller DJ; Palczewski K
    J Mol Biol; 2006 Apr; 358(1):255-69. PubMed ID: 16519899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation-induced conformational changes of photoactivated rhodopsin probed by fluorescent labeling at Cys
    Rodríguez S; Silva ML; Benaím G; Bubis J
    Biochimie; 2018 Jul; 150():57-69. PubMed ID: 29730301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tyrosine structural changes detected during the photoactivation of rhodopsin.
    DeLange F; Klaassen CH; Wallace-Williams SE; Bovee-Geurts PH; Liu XM; DeGrip WJ; Rothschild KJ
    J Biol Chem; 1998 Sep; 273(37):23735-9. PubMed ID: 9726981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin.
    Karnik SS; Sakmar TP; Chen HB; Khorana HG
    Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8459-63. PubMed ID: 3186735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lumi I --> Lumi II: the last detergent independent process in rhodopsin photoexcitationt.
    Epps J; Lewis JW; Szundi I; Kliger DS
    Photochem Photobiol; 2006; 82(6):1436-41. PubMed ID: 16553464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
    Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP
    J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.