These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8076019)

  • 1. Neuropathological features of profoundly hypothermic circulatory arrest: an experimental study in the pig.
    Fessatidis IT; Thomas VL; Shore DF; Hunt RH; Weller RO
    Cardiovasc Surg; 1993 Apr; 1(2):155-60. PubMed ID: 8076019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain damage after profoundly hypothermic circulatory arrest: correlations between neurophysiologic and neuropathologic findings. An experimental study in vertebrates.
    Fessatidis IT; Thomas VL; Shore DF; Sedgwick ME; Hunt RH; Weller RO
    J Thorac Cardiovasc Surg; 1993 Jul; 106(1):32-41. PubMed ID: 8321003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of neurological injury due to circulatory arrest during profound hypothermia. An experimental study in vertebrates.
    Fessatidis IT; Thomas VL; Shore DF; Hunt RH; Weller RO; Goodland F; Rowe D; Venetikou MV; Bloom SR
    Eur J Cardiothorac Surg; 1993; 7(9):465-72; discussion 473. PubMed ID: 8217225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: description of a new model.
    Jungwirth B; Mackensen GB; Blobner M; Neff F; Reichart B; Kochs EF; Nollert G
    J Thorac Cardiovasc Surg; 2006 Apr; 131(4):805-12. PubMed ID: 16580438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profound hypothermia protects neurons and astrocytes, and preserves cognitive functions in a Swine model of lethal hemorrhage.
    Alam HB; Chen Z; Ahuja N; Chen H; Conran R; Ayuste EC; Toruno K; Ariaban N; Rhee P; Nadel A; Koustova E
    J Surg Res; 2005 Jun; 126(2):172-81. PubMed ID: 15919416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs.
    Priestley MA; Golden JA; O'Hara IB; McCann J; Kurth CD
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):336-43. PubMed ID: 11174740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.
    Aharon AS; Mulloy MR; Drinkwater DC; Lao OB; Johnson MD; Thunder M; Yu C; Chang P
    Eur J Cardiothorac Surg; 2004 Nov; 26(5):912-9. PubMed ID: 15519182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of moderate versus deep hypothermic circulatory arrest and selective cerebral perfusion on cerebrospinal fluid proteomic profiles in a piglet model of cardiopulmonary bypass.
    Allibhai T; DiGeronimo R; Whitin J; Salazar J; Yu TT; Ling XB; Cohen H; Dixon P; Madan A
    J Thorac Cardiovasc Surg; 2009 Dec; 138(6):1290-6. PubMed ID: 19660276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual light spectroscopy reflects flow-related changes in brain oxygenation during regional low-flow perfusion and deep hypothermic circulatory arrest.
    Amir G; Ramamoorthy C; Riemer RK; Davis CR; Hanley FL; Reddy VM
    J Thorac Cardiovasc Surg; 2006 Dec; 132(6):1307-13. PubMed ID: 17140947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest.
    Cho DG; Mulloy MR; Chang PA; Johnson MD; Aharon AS; Robison TA; Buckles TL; Byrne DW; Drinkwater DC
    J Thorac Cardiovasc Surg; 2004 Apr; 127(4):1033-40. PubMed ID: 15052200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept.
    Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased transcription factor expression and permeability of the blood brain barrier associated with cardiopulmonary bypass in lambs.
    Cavaglia M; Seshadri SG; Marchand JE; Ochocki CL; Mee RB; Bokesch PM
    Ann Thorac Surg; 2004 Oct; 78(4):1418-25. PubMed ID: 15464507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional low-flow perfusion improves neurologic outcome compared with deep hypothermic circulatory arrest in neonatal piglets.
    Myung RJ; Petko M; Judkins AR; Schears G; Ittenbach RF; Waibel RJ; DeCampli WM
    J Thorac Cardiovasc Surg; 2004 Apr; 127(4):1051-6; discussion 1056-7. PubMed ID: 15052202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of cerebral blood flow and energy state in piglets after hypothermic circulatory arrest versus recovery after low-flow bypass.
    Kawata H; Fackler JC; Aoki M; Tsuji MK; Sawatari K; Offutt M; Hickey PR; Holtzman D; Jonas RA
    J Thorac Cardiovasc Surg; 1993 Oct; 106(4):671-85. PubMed ID: 8412262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest.
    Abdul-Khaliq H; Troitzsch D
    Thorac Cardiovasc Surg; 2003 Feb; 51(1):52-3. PubMed ID: 12587092
    [No Abstract]   [Full Text] [Related]  

  • 16. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest.
    Sheikh AM; Barrett C; Villamizar N; Alzate O; Miller S; Shelburne J; Lodge A; Lawson J; Jaggers J
    J Thorac Cardiovasc Surg; 2006 Oct; 132(4):820-8. PubMed ID: 17000293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral effects of cold reperfusion after hypothermic circulatory arrest.
    Ehrlich MP; McCullough J; Wolfe D; Zhang N; Shiang H; Weisz D; Bodian C; Griepp RB
    J Thorac Cardiovasc Surg; 2001 May; 121(5):923-31. PubMed ID: 11326236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-methyl-D-aspartate antagonist memantine has no neuroprotective effect during hypothermic circulatory arrest: a study in the chronic porcine model.
    Rimpiläinen J; Pokela M; Kiviluoma K; Vainionpää V; Hirvonen J; Ohtonen P; Jäntti V; Anttila V; Heinonen H; Juvonen T
    J Thorac Cardiovasc Surg; 2001 May; 121(5):957-68; discussion 968-70. PubMed ID: 11326240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs.
    Kim WG; Lim C; Moon HJ; Kim YJ
    Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of hypoxia inducible factor is associated with attenuation of neuronal injury in neonatal piglets undergoing deep hypothermic circulatory arrest.
    Kerendi F; Halkos ME; Kin H; Corvera JS; Brat DJ; Wagner MB; Vinten-Johansen J; Zhao ZQ; Forbess JM; Kanter KR; Kelley ME; Kirshbom PM
    J Thorac Cardiovasc Surg; 2005 Oct; 130(4):1079. PubMed ID: 16214523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.