These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8076968)

  • 1. Comparison of refolding patterns of erabutoxin b and cardiotoxin 3.10.2 from snake venom.
    Agbaji AS
    Indian J Biochem Biophys; 1994 Feb; 31(1):20-3. PubMed ID: 8076968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic structures of cardiotoxin 4 and cobrotoxin from Naja naja atra (Taiwan cobra).
    Chang LS; Lin J; Chou YC; Hong E
    Biochem Biophys Res Commun; 1997 Oct; 239(3):756-62. PubMed ID: 9367842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)--identification of structural features important for the lethal action of snake venom cardiotoxins.
    Jayaraman G; Kumar TK; Tsai CC; Srisailam S; Chou SH; Ho CL; Yu C
    Protein Sci; 2000 Apr; 9(4):637-46. PubMed ID: 10794406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of the active loop of snake toxins as probed by time-resolved polarized tryptophan fluorescence.
    Blandin P; Mérola F; Brochon JC; Trémeau O; Ménez A
    Biochemistry; 1994 Mar; 33(9):2610-9. PubMed ID: 8117723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structurally homologous toxins isolated from the Taiwan cobra (Naja naja atra) differ significantly in their structural stability.
    Sivaraman T; Kumar TK; Tu YT; Peng HJ; Yu C
    Arch Biochem Biophys; 1999 Mar; 363(1):107-15. PubMed ID: 10049504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiotoxin III from the Taiwan cobra (Naja naja atra). Determination of structure in solution and comparison with short neurotoxins.
    Bhaskaran R; Huang CC; Chang DK; Yu C
    J Mol Biol; 1994 Jan; 235(4):1291-301. PubMed ID: 8308891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-level production and isotope labeling of snake neurotoxins, disulfide-rich proteins.
    Drevet P; Lemaire C; Gasparini S; Zinn-Justin S; Lajeunesse E; Ducancel F; Pinkasfeld S; Courçon M; Tremeau O; Boulain JC; Ménez A
    Protein Expr Purif; 1997 Aug; 10(3):293-300. PubMed ID: 9268675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolding and refolding of cardiotoxin III elucidated by reversible conversion of the native and scrambled species.
    Chang JY; Kumar TK; Yu C
    Biochemistry; 1998 May; 37(19):6745-51. PubMed ID: 9578558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of helical conformation in all beta-sheet proteins by trifluoroethanol.
    Arunkumar AI; Kumar TK; Jayaraman G; Samuel D; Yu C
    J Biomol Struct Dyn; 1996 Dec; 14(3):381-5. PubMed ID: 9016415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of intermediates in the refolding of reduced erabutoxin b by analytical isoelectric focusing in layers of polyacrylamide gel.
    Bouet F; Ménez A; Hider RC; Fromageot P
    Biochem J; 1982 Mar; 201(3):495-9. PubMed ID: 7092808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The length of a single turn controls the overall folding rate of "three-fingered" snake toxins.
    Ruoppolo M; Moutiez M; Mazzeo MF; Pucci P; Ménez A; Marino G; Quéméneur E
    Biochemistry; 1998 Nov; 37(46):16060-8. PubMed ID: 9819199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully oxidized scrambled isomers are essential and predominant folding intermediates of cardiotoxin-III.
    Chang JY; Lu BY; Lin CC; Yu C
    FEBS Lett; 2006 Jan; 580(2):656-60. PubMed ID: 16412427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis and comparison of cobrotoxin and cardiotoxins by near-IR Fourier transform Raman spectroscopy.
    Chiou SH; Lee BS; Yu NT
    Biochem Int; 1992 Mar; 26(4):747-58. PubMed ID: 1610379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding stabilities of two paralogous proteins from Naja naja naja (Indian cobra) as probed by molecular dynamics simulations.
    Gorai B; Sivaraman T
    Toxicon; 2013 Sep; 72():11-22. PubMed ID: 23791667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a locality in snake venom alpha-neurotoxins with a significant compositional similarity to marine snail alpha-conotoxins: implications for evolution and structure/activity.
    Dufton MJ; Bladon P; Harvey AL
    J Mol Evol; 1989 Oct; 29(4):355-66. PubMed ID: 2514275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid.
    Jang JY; Krishnaswamy T; Kumar S; Jayaraman G; Yang PW; Yu C
    Biochemistry; 1997 Dec; 36(48):14635-41. PubMed ID: 9398182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 1H nuclear-magnetic-resonance spectra of Neurotoxin I and cardiotoxin Vii4 from Naja mossambica mossambica.
    Lauterwein J; Lazdunski M; Wüthrich K
    Eur J Biochem; 1978 Dec; 92(2):361-71. PubMed ID: 33043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, direct expression, and purification of a snake venom cardiotoxin in Escherichia coli.
    Kumar TK; Yang PW; Lin SH; Wu CY; Lei B; Lo SJ; Tu SC; Yu C
    Biochem Biophys Res Commun; 1996 Feb; 219(2):450-6. PubMed ID: 8605008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational prediction for snake venom toxins and laser Raman scattering of a cardiotoxin from Taiwan cobra (Naja naja atra) venom.
    Hseu TH; Liu YC; Wang C; Chang H; Hwang DM; Yang CC
    Biochemistry; 1977 Jun; 16(13):2999-3006. PubMed ID: 560203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation of cardiotoxins isolated from Naja naja siamensis.
    Agbaji AS
    Indian J Biochem Biophys; 1986 Feb; 23(1):52-3. PubMed ID: 3733141
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.