These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8077113)

  • 41. The role of sex hormones in the growth of antler bone tissue. I: Endocrine and metabolic effects of antiandrogen therapy.
    Bubenik GA; Bubenik AB; Brown GM; Wilson DA
    J Exp Zool; 1975 Nov; 194(2):349-58. PubMed ID: 1194873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioelectric potentials associated with the growing deer antler.
    Lake FT; Solomon GC; Davis RW; Pace N; Morgan JR
    Clin Orthop Relat Res; 1979; (142):237-43. PubMed ID: 498641
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus).
    Gaspar-López E; Landete-Castillejos T; Estevez JA; Ceacero F; Gallego L; García AJ
    Reprod Domest Anim; 2010 Apr; 45(2):243-9. PubMed ID: 18992114
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Does chemical composition of antler bone reflect the physiological effort made to grow it?
    Landete-Castillejos T; Estevez JA; Martínez A; Ceacero F; Garcia A; Gallego L
    Bone; 2007 Apr; 40(4):1095-102. PubMed ID: 17239669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Induction of antler growth in a congenitally polled Scottish red deer stag.
    Lincoln GA; Fletcher TJ
    J Exp Zool; 1976 Feb; 195(2):247-52. PubMed ID: 1262815
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MHC, parasites and antler development in red deer: no support for the Hamilton & Zuk hypothesis.
    Buczek M; Okarma H; Demiaszkiewicz AW; Radwan J
    J Evol Biol; 2016 Mar; 29(3):617-32. PubMed ID: 26687843
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Future directions in antler research.
    Goss RJ
    Anat Rec; 1995 Mar; 241(3):291-302. PubMed ID: 7755168
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sire x herd interactions for weaning weight in beef cattle.
    Notter DR; Tier B; Meyer K
    J Anim Sci; 1992 Aug; 70(8):2359-65. PubMed ID: 1506299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Manganese Supplementation in Deer under Balanced Diet Increases Impact Energy and Contents in Minerals of Antler Bone Tissue.
    Cappelli J; Garcia A; Ceacero F; Gomez S; Luna S; Gallego L; Gambin P; Landete-Castillejos T
    PLoS One; 2015; 10(7):e0132738. PubMed ID: 26177083
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antler stiffness in moose (Alces alces): correlated evolution of bone function and material properties?
    Blob RW; Snelgrove JM
    J Morphol; 2006 Sep; 267(9):1075-86. PubMed ID: 16752424
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lateralization during lateral display and its relationship with antler size and symmetry in fallow deer (Dama dama).
    Jennings DJ; Gammell MP
    Laterality; 2018 Jan; 23(1):1-19. PubMed ID: 28276876
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of dominance relationships on the estimation of dominance variance with sire-dam subclass effects.
    Gengler N; Van Vleck LD; MacNeil MD; Misztal I; Pariacote FA
    J Anim Sci; 1997 Nov; 75(11):2885-91. PubMed ID: 9374300
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cumulative selection and genetic change for weaning or yearling weight or for yearling weight plus muscle score in Hereford cattle.
    Koch RM; Cundiff LV; Gregory KE
    J Anim Sci; 1994 Apr; 72(4):864-85. PubMed ID: 8014151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of sire breed solutions for growth traits adjusted by mean expected progeny differences to a 1993 base.
    Barkhouse KL; Van Vleck LD; Cundiff LV; Buchanan DS; Marshall DM
    J Anim Sci; 1998 Sep; 76(9):2287-93. PubMed ID: 9781484
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cohort antler size signals environmental stress in a moderate climate.
    Strickland BK; Dixon PG; Jones PD; Demarais S; Owen NO; Cox DA; Landry-Guyton K; Baldwin WM; McKinley WT
    Int J Biometeorol; 2020 Apr; 64(4):611-621. PubMed ID: 31900588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Testosterone, but not IGF-1, LH, prolactin or cortisol, may serve as antler-stimulating hormone in red deer stags (Cervus elaphus).
    Bartos L; Schams D; Bubenik GA
    Bone; 2009 Apr; 44(4):691-8. PubMed ID: 19124089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genomic architecture of phenotypic extremes in a wild cervid.
    Anderson SJ; Côté SD; Richard JH; Shafer ABA
    BMC Genomics; 2022 Feb; 23(1):126. PubMed ID: 35151275
    [TBL] [Abstract][Full Text] [Related]  

  • 58. (Co)variance components, genetic parameters and annual trends for calf weights in a Brahman herd kept on floodable savanna.
    Plasse D; Verde O; Arango J; Camaripano L; Fossi H; Romero R; Rodriguez CM; Rumbos JL
    Genet Mol Res; 2002 Dec; 1(4):282-97. PubMed ID: 14963819
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic parameter estimates and expected progeny differences for mature size in Angus cattle.
    Northcutt SL; Wilson DE
    J Anim Sci; 1993 May; 71(5):1148-53. PubMed ID: 8505247
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mechanical properties of red deer antler bone when used in fighting.
    Currey JD; Landete-Castillejos T; Estevez J; Ceacero F; Olguin A; Garcia A; Gallego L
    J Exp Biol; 2009 Dec; 212(Pt 24):3985-93. PubMed ID: 19946076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.