BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8077184)

  • 1. MtDNA and nuclear mutations affecting oxidative phosphorylation: correlating severity of clinical defect with extent of bioenergetic compromise.
    Robinson BH
    J Bioenerg Biomembr; 1994 Jun; 26(3):311-6. PubMed ID: 8077184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 8993 mtDNA mutation: heteroplasmy and clinical presentation in three families.
    Tatuch Y; Pagon RA; Vlcek B; Roberts R; Korson M; Robinson BH
    Eur J Hum Genet; 1994; 2(1):35-43. PubMed ID: 8044652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical and molecular findings in four new patients harbouring the mtDNA 8993T>C mutation.
    Vilarinho L; Barbot C; Carrozzo R; Calado E; Tessa A; Dionisi-Vici C; Guimarães A; Santorelli FM
    J Inherit Metab Dis; 2001 Dec; 24(8):883-4. PubMed ID: 11916326
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparative biochemical studies in fibroblasts from patients with different forms of Leigh syndrome.
    Vazquez-Memije ME; Shanske S; Santorelli FM; Kranz-Eble P; Davidson E; DeVivo DC; DiMauro S
    J Inherit Metab Dis; 1996; 19(1):43-50. PubMed ID: 8830176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation.
    Fosslien E
    Ann Clin Lab Sci; 2001 Jan; 31(1):25-67. PubMed ID: 11314862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial DNA mutation at 8993 associated with NARP slows the rate of ATP synthesis in isolated lymphoblast mitochondria.
    Tatuch Y; Robinson BH
    Biochem Biophys Res Commun; 1993 Apr; 192(1):124-8. PubMed ID: 8476414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subacute necrotizing encephalopathy: oxidative phosphorylation defects and the ATPase 6 point mutation.
    Shoffner JM; Fernhoff PM; Krawiecki NS; Caplan DB; Holt PJ; Koontz DA; Takei Y; Newman NJ; Ortiz RG; Polak M
    Neurology; 1992 Nov; 42(11):2168-74. PubMed ID: 1436530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA.
    Sgarbi G; Baracca A; Lenaz G; Valentino LM; Carelli V; Solaini G
    Biochem J; 2006 May; 395(3):493-500. PubMed ID: 16402916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical heterogeneity associated with the mitochondrial DNA T8993C point mutation.
    Santorelli FM; Mak SC; Vazquez-Memije ME; Shanske S; Kranz-Eble P; Jain KD; Bluestone DL; De Vivo DC; DiMauro S
    Pediatr Res; 1996 May; 39(5):914-7. PubMed ID: 8726250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of 'binary mitochondrial heteroplasmy' on respiration and ATP synthesis: implications for mitochondrial diseases.
    Korzeniewski B; Malgat M; Letellier T; Mazat JP
    Biochem J; 2001 Aug; 357(Pt 3):835-42. PubMed ID: 11463355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or v subunits.
    Bonnet C; Kaltimbacher V; Ellouze S; Augustin S; Bénit P; Forster V; Rustin P; Sahel JA; Corral-Debrinski M
    Rejuvenation Res; 2007 Jun; 10(2):127-44. PubMed ID: 17518546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: a clinical, biochemical, and molecular study in six families.
    Uziel G; Moroni I; Lamantea E; Fratta GM; Ciceri E; Carrara F; Zeviani M
    J Neurol Neurosurg Psychiatry; 1997 Jul; 63(1):16-22. PubMed ID: 9221962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial DNA mutations in human degenerative diseases and aging.
    Wallace DC; Shoffner JM; Trounce I; Brown MD; Ballinger SW; Corral-Debrinski M; Horton T; Jun AS; Lott MT
    Biochim Biophys Acta; 1995 May; 1271(1):141-51. PubMed ID: 7599200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit.
    Gerbitz KD; Gempel K; Brdiczka D
    Diabetes; 1996 Feb; 45(2):113-26. PubMed ID: 8549853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assay of mitochondrial ATP synthesis in animal cells.
    Manfredi G; Spinazzola A; Checcarelli N; Naini A
    Methods Cell Biol; 2001; 65():133-45. PubMed ID: 11381590
    [No Abstract]   [Full Text] [Related]  

  • 16. Mitochondrial myopathies and encephalomyopathies.
    Schapira AH; Cock HR
    Eur J Clin Invest; 1999 Oct; 29(10):886-98. PubMed ID: 10583431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of small molecules on nuclear-encoded translation diseases.
    Soiferman D; Ayalon O; Weissman S; Saada A
    Biochimie; 2014 May; 100():184-91. PubMed ID: 24012549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal inheritance and the evaluation of oxidative phosphorylation diseases.
    Shoffner JM
    Lancet; 1996 Nov; 348(9037):1283-8. PubMed ID: 8909383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh's syndrome.
    Vo TD; Paul Lee WN; Palsson BO
    Mol Genet Metab; 2007 May; 91(1):15-22. PubMed ID: 17336115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial DNA background modifies the bioenergetics of NARP/MILS ATP6 mutant cells.
    D'Aurelio M; Vives-Bauza C; Davidson MM; Manfredi G
    Hum Mol Genet; 2010 Jan; 19(2):374-86. PubMed ID: 19875463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.