These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The acceptor specificity of flavins and flavoproteins. 3. Flavoproteins. Dixon M Biochim Biophys Acta; 1971 Mar; 226(2):269-84. PubMed ID: 4396857 [No Abstract] [Full Text] [Related]
23. NADPH cytochrome P-450 reductase and its role in the mixed function oxidase reaction. Strobel HW; Dignam JD; Gum JR Pharmacol Ther; 1980; 8(3):525-37. PubMed ID: 6770379 [No Abstract] [Full Text] [Related]
24. Formation of a human "electron transferring flavoprotein". Medium chain acyl coenzyme A dehydrogenase complex, preliminary evidence from crosslinking studies. Parker A; Engel PC Adv Exp Med Biol; 1999; 466():191-4. PubMed ID: 10709643 [No Abstract] [Full Text] [Related]
26. Purification of NADPH-dependent electron-transferring flavoproteins and N-terminal protein sequence data of dihydrolipoamide dehydrogenases from anaerobic, glycine-utilizing bacteria. Dietrichs D; Meyer M; Schmidt B; Andreesen JR J Bacteriol; 1990 Apr; 172(4):2088-95. PubMed ID: 2318809 [TBL] [Abstract][Full Text] [Related]
27. One-electron-transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase). Iyanagi T; Yamazaki I Biochim Biophys Acta; 1970 Sep; 216(2):282-94. PubMed ID: 4396182 [No Abstract] [Full Text] [Related]
29. Evaluation of electron-transfer flavoprotein and alpha-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of beta-oxidation. Kunz WS Biochim Biophys Acta; 1988 Jan; 932(1):8-16. PubMed ID: 3337800 [TBL] [Abstract][Full Text] [Related]
30. Flavin and 5-deazaflavin: a chemical evaluation of 'modified' flavoproteins with respect to the mechanisms of redox biocatalysis. Hemmerich P; Massey V FEBS Lett; 1977 Dec; 84(1):5-21. PubMed ID: 145377 [No Abstract] [Full Text] [Related]
31. Reduced cytochrome c as an electron donor for microsomal mixed-function oxidase reactions. Wahle KW; Davies NT Proc Nutr Soc; 1977 May; 36(1):29A. PubMed ID: 19743 [No Abstract] [Full Text] [Related]
32. Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases. Hiraka K; Tsugawa W; Sode K Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32471202 [TBL] [Abstract][Full Text] [Related]
33. Mechanisms of azo reduction by Streptococcus faecalis. II. The role of soluble flavins. Gingell R; Walker R Xenobiotica; 1971 May; 1(3):231-9. PubMed ID: 4341449 [No Abstract] [Full Text] [Related]
35. Chemical approaches to the study of enzymes catalyzing redox transformations. Walsh C Annu Rev Biochem; 1978; 47():881-931. PubMed ID: 354507 [No Abstract] [Full Text] [Related]
37. Superoxide radical as an intermediate in the oxidation of hydroxylamines by mixed function amine oxidase. Rauckman EJ; Rosen GM; Kitchell BB Mol Pharmacol; 1979 Jan; 15(1):131-7. PubMed ID: 34088 [No Abstract] [Full Text] [Related]
38. The univalent reduction of oxygen by reduced flavins and quinones. Misra HP; Fridovich I J Biol Chem; 1972 Jan; 247(1):188-92. PubMed ID: 4401581 [No Abstract] [Full Text] [Related]
39. Flavin-dependent N-hydroxylating enzymes: distribution and application. Mügge C; Heine T; Baraibar AG; van Berkel WJH; Paul CE; Tischler D Appl Microbiol Biotechnol; 2020 Aug; 104(15):6481-6499. PubMed ID: 32504128 [TBL] [Abstract][Full Text] [Related]
40. On the structure of flavin-oxygen intermediates involved in enzymatic reactions. Ghisla S; Entsch B; Massey V; Husein M Eur J Biochem; 1977 Jun; 76(1):139-48. PubMed ID: 18348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]