BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8077212)

  • 21. Characterization of the isolated cAMP-binding B domain of cAMP-dependent protein kinase.
    Shabb JB; Poteet CE; Kapphahn MA; Muhonen WM; Baker NE; Corbin JD
    Protein Sci; 1995 Oct; 4(10):2100-6. PubMed ID: 8535246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crosstalk between domains in the regulatory subunit of cAMP-dependent protein kinase: influence of amino terminus on cAMP binding and holoenzyme formation.
    Herberg FW; Dostmann WR; Zorn M; Davis SJ; Taylor SS
    Biochemistry; 1994 Jun; 33(23):7485-94. PubMed ID: 8003514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. cAMP-dependent protein kinase regulatory subunit type IIbeta: active site mutations define an isoform-specific network for allosteric signaling by cAMP.
    Zawadzki KM; Taylor SS
    J Biol Chem; 2004 Feb; 279(8):7029-36. PubMed ID: 14625280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation-defective mutants of type I cAMP-dependent protein kinase. Consequences of replacing arginine 94 and arginine 95.
    Buechler YJ; Herberg FW; Taylor SS
    J Biol Chem; 1993 Aug; 268(22):16495-503. PubMed ID: 8393867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of a chimeric, cGMP-sensitive regulatory subunit of the cAMP-dependent protein kinase type I alpha.
    Wild N; Herberg FW; Hofmann F; Dostmann WR
    FEBS Lett; 1995 Nov; 374(3):356-62. PubMed ID: 7589570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of the A-helix of the catalytic subunit of cAMP-dependent protein kinase for stability and for orienting subdomains at the cleft interface.
    Herberg FW; Zimmermann B; McGlone M; Taylor SS
    Protein Sci; 1997 Mar; 6(3):569-79. PubMed ID: 9070439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissecting the cooperative reassociation of the regulatory and catalytic subunits of cAMP-dependent protein kinase. Role of Trp-196 in the catalytic subunit.
    Gibson RM; Taylor SS
    J Biol Chem; 1997 Dec; 272(51):31998-2005. PubMed ID: 9405392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. C subunits binding to the protein kinase A RI alpha dimer induce a large conformational change.
    Heller WT; Vigil D; Brown S; Blumenthal DK; Taylor SS; Trewhella J
    J Biol Chem; 2004 Apr; 279(18):19084-90. PubMed ID: 14985329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissecting the domain structure of the regulatory subunit of cAMP-dependent protein kinase I and elucidating the role of MgATP.
    Ringheim GE; Taylor SS
    J Biol Chem; 1990 Mar; 265(9):4800-8. PubMed ID: 2156855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutagenesis of the regulatory subunit (RII beta) of cAMP-dependent protein kinase II beta reveals hydrophobic amino acids that are essential for RII beta dimerization and/or anchoring RII beta to the cytoskeleton.
    Li Y; Rubin CS
    J Biol Chem; 1995 Jan; 270(4):1935-44. PubMed ID: 7829531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The rate of recombination of the subunits (RI and C) of cAMP-dependent protein kinase depends on whether one or two cAMP molecules are bound per RI monomer.
    Houge G; Steinberg RA; Ogreid D; Døskeland SO
    J Biol Chem; 1990 Nov; 265(32):19507-16. PubMed ID: 2174041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of the carboxyl-terminal regional of the cAMP-dependent protein kinase type I alpha regulatory subunit to cyclic nucleotide interactions.
    Kapphahn MA; Shabb JB
    Arch Biochem Biophys; 1997 Dec; 348(2):347-56. PubMed ID: 9434747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High affinity binding of the heat-stable protein kinase inhibitor to the catalytic subunit of cAMP-dependent protein kinase is selectively abolished by mutation of Arg133.
    Wen W; Taylor SS
    J Biol Chem; 1994 Mar; 269(11):8423-30. PubMed ID: 8132568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of cAMP-binding mutations in type I protein kinase.
    Correll LA; Woodford TA; Corbin JD; Mellon PL; McKnight GS
    J Biol Chem; 1989 Oct; 264(28):16672-8. PubMed ID: 2550452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing cAMP-dependent protein kinase holoenzyme complexes I alpha and II beta by FT-IR and chemical protein footprinting.
    Yu S; Mei FC; Lee JC; Cheng X
    Biochemistry; 2004 Feb; 43(7):1908-20. PubMed ID: 14967031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autophosphorylation of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli.
    Yonemoto W; McGlone ML; Grant B; Taylor SS
    Protein Eng; 1997 Aug; 10(8):915-25. PubMed ID: 9415441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The consequences of introducing an autophosphorylation site into the type I regulatory subunit of cAMP-dependent protein kinase.
    Durgerian S; Taylor SS
    J Biol Chem; 1989 Jun; 264(17):9807-13. PubMed ID: 2656713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recombinant strategies for rapid purification of catalytic subunits of cAMP-dependent protein kinase.
    Hemmer W; McGlone M; Taylor SS
    Anal Biochem; 1997 Feb; 245(2):115-22. PubMed ID: 9056191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition.
    Dao KK; Teigen K; Kopperud R; Hodneland E; Schwede F; Christensen AE; Martinez A; Døskeland SO
    J Biol Chem; 2006 Jul; 281(30):21500-21511. PubMed ID: 16728394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation.
    Kim C; Cheng CY; Saldanha SA; Taylor SS
    Cell; 2007 Sep; 130(6):1032-43. PubMed ID: 17889648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.