BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8077675)

  • 1. Acquisition of iron bound to low molecular weight chelates by human monocyte-derived macrophages.
    Olakanmi O; Stokes JB; Britigan BE
    J Immunol; 1994 Sep; 153(6):2691-703. PubMed ID: 8077675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The host-protein-independent iron uptake by Tritrichomonas foetus.
    Tachezy J; Suchan P; Schrével J; Kulda J
    Exp Parasitol; 1998 Oct; 90(2):155-63. PubMed ID: 9769245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hereditary hemochromatosis results in decreased iron acquisition and growth by Mycobacterium tuberculosis within human macrophages.
    Olakanmi O; Schlesinger LS; Britigan BE
    J Leukoc Biol; 2007 Jan; 81(1):195-204. PubMed ID: 17038583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two saturable mechanisms of iron uptake from transferrin in human melanoma cells: the effect of transferrin concentration, chelators, and metabolic probes on transferrin and iron uptake.
    Richardson DR; Baker E
    J Cell Physiol; 1994 Oct; 161(1):160-8. PubMed ID: 7929602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transferrin-bound and transferrin free iron uptake by cultured rat astrocytes.
    Qian ZM; Liao QK; To Y; Ke Y; Tsoi YK; Wang GF; Ho KP
    Cell Mol Biol (Noisy-le-grand); 2000 May; 46(3):541-8. PubMed ID: 10872741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of iron loading on uptake, speciation, and chelation of iron in cultured myocardial cells.
    Parkes JG; Hussain RA; Olivieri NF; Templeton DM
    J Lab Clin Med; 1993 Jul; 122(1):36-47. PubMed ID: 8320489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells.
    Olakanmi O; Kesavalu B; Abdalla MY; Britigan BE
    Microb Pathog; 2013 Dec; 65():21-8. PubMed ID: 24067451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of uptake of transferrin-bound iron by human hepatoma cells by nontransferrin-bound iron.
    Trinder D; Morgan E
    Hepatology; 1997 Sep; 26(3):691-8. PubMed ID: 9303500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic uptake of iron by receptor-mediated and receptor-independent mechanisms.
    Scheiber B; Goldenberg H
    Z Gastroenterol; 1996 Jun; 34 Suppl 3():95-8. PubMed ID: 8767477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.
    Schönherr J; Fernández V; Schreiber L
    J Agric Food Chem; 2005 Jun; 53(11):4484-92. PubMed ID: 15913315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivalent metal-induced iron acquisition from transferrin and lactoferrin by myeloid cells.
    Olakanmi O; Rasmussen GT; Lewis TS; Stokes JB; Kemp JD; Britigan BE
    J Immunol; 2002 Aug; 169(4):2076-84. PubMed ID: 12165535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure-activity relationship of ferric pyoverdine bound to its outer membrane transporter: implications for the mechanism of iron uptake.
    Schons V; Atkinson RA; Dugave C; Graff R; Mislin GL; Rochet L; Hennard C; Kieffer B; Abdallah MA; Schalk IJ
    Biochemistry; 2005 Nov; 44(43):14069-79. PubMed ID: 16245923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of iron by isolated rat hepatocytes from a hydrophilic impermeant ferric chelate, Fe(III)-DTPA.
    Scheiber B; Goldenberg H
    Arch Biochem Biophys; 1996 Feb; 326(2):185-92. PubMed ID: 8611022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin.
    Tachezy J; Kulda J; Bahníková I; Suchan P; Rázga J; Schrével J
    Exp Parasitol; 1996 Jul; 83(2):216-28. PubMed ID: 8682190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophages function as a ferritin iron source for cultured human erythroid precursors.
    Leimberg MJ; Prus E; Konijn AM; Fibach E
    J Cell Biochem; 2008 Mar; 103(4):1211-8. PubMed ID: 17902167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobactin-mediated iron acquisition within macrophages.
    Luo M; Fadeev EA; Groves JT
    Nat Chem Biol; 2005 Aug; 1(3):149-53. PubMed ID: 16408019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311.
    Chaston TB; Lovejoy DB; Watts RN; Richardson DR
    Clin Cancer Res; 2003 Jan; 9(1):402-14. PubMed ID: 12538494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of iron metabolism in monocytic THP-1 cells and cultured human monocytes by the acute-phase protein alpha1-antitrypsin.
    Graziadei I; Weiss G; Egger C; Niederwieser D; Patsch JR; Vogel W
    Exp Hematol; 1998 Oct; 26(11):1053-60. PubMed ID: 9766445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemical reduction of ferric iron by chelators results in DNA strand breaks.
    Chao CC; Aust AE
    Arch Biochem Biophys; 1993 Feb; 300(2):544-50. PubMed ID: 8382025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.