BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8077840)

  • 41. Phospholipid molecular species influence crystal habits and transition sequences of metastable intermediates during cholesterol crystallization from bile salt-rich model bile.
    Konikoff FM; Cohen DE; Carey MC
    J Lipid Res; 1994 Jan; 35(1):60-70. PubMed ID: 8138723
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cholesterol crystallization in model biles: effects of bile salt and phospholipid species composition.
    Moschetta A; vanBerge-Henegouwen GP; Portincasa P; Palasciano G; van Erpecum KJ
    J Lipid Res; 2001 Aug; 42(8):1273-81. PubMed ID: 11483629
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development and validation of a quantitative assay for cholesterol crystal growth in human gallbladder bile.
    Ginanni Corradini S; Cantafora A; Capocaccia L; Della Guardia P; Giacomelli L; Angelico M
    Biochim Biophys Acta; 1994 Aug; 1214(1):63-72. PubMed ID: 8068730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Association between cholesterol-phospholipid vesicles and cholesterol crystals in human gallbladder bile.
    Schriever CE; Jüngst D
    Hepatology; 1989 Apr; 9(4):541-6. PubMed ID: 2925158
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interactions between organic anions, micelles and vesicles in model bile systems.
    Verkade HJ; de Bruijn MA; Brink MA; Talsma H; Vonk RJ; Kuipers F; Groen AK
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):917-23. PubMed ID: 9003381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The pH dependence of the hemolytic potency of bile salts.
    Ilani A; Granoth R
    Biochim Biophys Acta; 1990 Aug; 1027(2):199-204. PubMed ID: 2397231
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accurate separation of vesicles, micelles and cholesterol crystals in supersaturated model biles by ultracentrifugation, ultrafiltration and dialysis.
    Moschetta A; Eckhardt ER; De Smet MB; Renooij W; Van Berge-Henegouwen GP; Van Erpecum KJ
    Biochim Biophys Acta; 2001 May; 1532(1-2):15-27. PubMed ID: 11420170
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental evaluation of a model for predicting micellar composition and concentration of monomeric species in bile salt binary mixtures.
    Roda A; Cerré C; Fini A; Sipahi AM; Baraldini M
    J Pharm Sci; 1995 May; 84(5):593-8. PubMed ID: 7658350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Method for quantitative assessment of transformation of non-micellar cholesterol carriers in model bile systems.
    Yamashita Y; Tazuma S; Kajiyama G
    J Gastroenterol Hepatol; 1996 Sep; 11(9):864-9. PubMed ID: 8889967
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative effects of ursodeoxycholic acid and chenodeoxycholic acid on bile acid kinetics and biliary lipid secretion in humans. Evidence for different modes of action on bile acid synthesis.
    Nilsell K; Angelin B; Leijd B; Einarsson K
    Gastroenterology; 1983 Dec; 85(6):1248-56. PubMed ID: 6628924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Less hydrophobic phosphatidylcholine species simplify biliary vesicle morphology, but induce bile metastability with a broad spectrum of crystal forms.
    Sakomoto M; Tazuma S; Chayama K
    Biochem J; 2002 Feb; 362(Pt 1):105-12. PubMed ID: 11829745
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The ionization behavior of bile acids in different aqueous environments.
    Cabral DJ; Hamilton JA; Small DM
    J Lipid Res; 1986 Mar; 27(3):334-43. PubMed ID: 3734630
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences.
    Wang DQ; Carey MC
    J Lipid Res; 1996 Dec; 37(12):2539-49. PubMed ID: 9017506
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bile salt damage of egg phosphatidylcholine liposomes.
    O'Connor CJ; Wallace RG; Iwamoto K; Taguchi T; Sunamoto J
    Biochim Biophys Acta; 1985 Jul; 817(1):95-102. PubMed ID: 4039949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of complete sulfation of bile acids on bile formation: role of conjugation and number of sulfate groups.
    Yousef I; Mignault D; Tuchweber B
    Hepatology; 1992 Mar; 15(3):438-45. PubMed ID: 1544624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ursodeoxycholic acid treatment in humans: effects on plasma and biliary lipid metabolism with special reference to very low density lipoprotein triglyceride and bile acid kinetics.
    Angelin B; Nilsell K; Einarsson K
    Eur J Clin Invest; 1986 Apr; 16(2):169-77. PubMed ID: 3089812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of novel cationic bile salts in cholesterol crystallization and solubilization in vitro.
    Bhat S; Leikin-Gobbi D; Konikoff FM; Maitra U
    Biochim Biophys Acta; 2006 Oct; 1760(10):1489-96. PubMed ID: 16919881
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Membrane cholesterol content of cholesterol/phospholipid vesicles determines the susceptibility to both damage and protection by bile salts: implications for bile physiology.
    van de Heijning BJ; van den Broek AM; van Berge-Henegouwen GP
    Eur J Gastroenterol Hepatol; 1997 May; 9(5):473-9. PubMed ID: 9187880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.