BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8077840)

  • 61. Behavior of various cholesterol crystals in bile from patients with gallstones.
    Portincasa P; van Erpecum KJ; Jansen A; Renooij W; Gadellaa M; vanBerge-Henegouwen GP
    Hepatology; 1996 Apr; 23(4):738-48. PubMed ID: 8666327
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hypocholesterolemic effect of bile acid sulfonate analogs in hamsters.
    Kim HG; Une M; Kuramoto T; Noshiro M; Fujimura K
    Biol Pharm Bull; 2001 Mar; 24(3):218-20. PubMed ID: 11256473
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Deoxycholate and cholate modulate the source of cholesterol substrate for bile acid synthesis in the rat.
    Scheibner J; Fuchs M; Schiemann M; Stange EF
    Hepatology; 1995 Feb; 21(2):529-38. PubMed ID: 7843727
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The effect of ursodeoxycholic acid on biliary bile acid composition in patients with cholesterol gallstone.
    Kanazawa Y; Koizumi M; Hirakawa H; Endo K; Yoshida S; Miyakawa T; Konno Y; Goto Y; Goto J; Nambara T
    Tohoku J Exp Med; 1982 Mar; 136(3):235-49. PubMed ID: 7071843
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cholesterol nucleates rapidly from mixed micelles in the prairie dog.
    Ahrendt SA; Fox-Talbot K; Kaufman HS; Lillemoe KD; Pitt HA
    Biochim Biophys Acta; 1994 Feb; 1211(1):7-13. PubMed ID: 8123684
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Stability of mixed micellar systems made by solubilizing phosphatidylcholine-cholesterol vesicles by bile salts.
    Lichtenberg D; Ragimova S; Bor A; Almog S; Vinkler C; Peled Y; Halpern Z
    Hepatology; 1990 Sep; 12(3 Pt 2):149S-153S; discussion 153S-154S. PubMed ID: 2210643
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Kinetics and thermodynamics of dissolution of lecithin by bile salts.
    Lindenbaum S; Rajagopalan N
    Hepatology; 1984; 4(5 Suppl):124S-128S. PubMed ID: 6479867
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Accurate separation of biliary lipid aggregates requires the correct intermixed micellar/intervesicular bile salt concentration.
    Donovan JM; Jackson AA
    Hepatology; 1998 Mar; 27(3):641-8. PubMed ID: 9500688
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The comparative potency of cholesterol crystallization-effector proteins in supersaturated model bile systems: association with vesicle transformation.
    Hattori Y; Tazuma S; Yamashita G; Kajiyama G
    J Gastroenterol Hepatol; 1998 Nov; 13(11):1161-70. PubMed ID: 9870806
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Inhibition of cholesterol crystallization under bilirubin deconjugation: partial characterization of mechanisms whereby infected bile accelerates pigment stone formation.
    Nakai K; Tazuma S; Nishioka T; Chayama K
    Biochim Biophys Acta; 2003 Jun; 1632(1-3):48-54. PubMed ID: 12782150
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modulation of cholesterol crystallization in bile. Implications for non-surgical treatment of cholesterol gallstone disease.
    Portincasa P; Moschetta A; van Erpecum KJ; Vacca M; Petruzzelli M; Calamita G; Meyer G; Palasciano G
    Curr Drug Targets Immune Endocr Metabol Disord; 2005 Jun; 5(2):177-84. PubMed ID: 16089350
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of hydrophobic and hydrophilic bile salts on gallstone growth and dissolution in model biles.
    Venneman NG; van Kammen M; Renooij W; Vanberge-Henegouwen GP; van Erpecum KJ
    Biochim Biophys Acta; 2005 Jan; 1686(3):209-19. PubMed ID: 15629690
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Influence of bile salts on molecular interactions between sphingomyelin and cholesterol: relevance to bile formation and stability.
    van Erpecum KJ; Carey MC
    Biochim Biophys Acta; 1997 Apr; 1345(3):269-82. PubMed ID: 9150247
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo.
    Moschetta A; vanBerge-Henegouwen GP; Portincasa P; Renooij WL; Groen AK; van Erpecum KJ
    J Hepatol; 2001 Apr; 34(4):492-9. PubMed ID: 11394647
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differential effects of ursodeoxycholic acid and ursocholic acid on the formation of biliary cholesterol crystals in mice.
    Uchida K; Akiyoshi T; Igimi H; Takase H; Nomura Y; Ishihara S
    Lipids; 1991 Jul; 26(7):526-30. PubMed ID: 1943496
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bovine gallbladder mucin promotes cholesterol crystal nucleation from cholesterol-transporting vesicles in supersaturated model bile.
    Lee TJ; Smith BF
    J Lipid Res; 1989 Apr; 30(4):491-8. PubMed ID: 2754332
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Studies in vitro on the influence of ursodeoxycholate sodium salt (UDC) on hepatocyte proliferation.
    Barone M; Panella C; Angelini A; Romanelli D; Francavilla A
    J Surg Oncol Suppl; 1993; 3():8-13. PubMed ID: 8503985
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Formation of urso- and ursodeoxy-cholic acids from primary bile acids by Clostridium absonum.
    Macdonald IA; Hutchison DM; Forrest TP
    J Lipid Res; 1981 Mar; 22(3):458-66. PubMed ID: 6940948
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantitation of cholesterol crystallization from supersaturated model bile.
    Portincasa P; Venneman NG; Moschetta A; van den Berg A; Palasciano G; vanBerge-Henegouwen GP; van Erpecum KJ
    J Lipid Res; 2002 Apr; 43(4):604-10. PubMed ID: 11907143
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of a small vesicular cholesterol carrier in human gallbladder bile.
    Ahrendt SA; Fox-Talbot MK; Kaufman HS; Lillemoe KD; Lipsett PA; Pitt HA
    Ann Surg; 1994 Nov; 220(5):635-43. PubMed ID: 7979611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.