BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8077873)

  • 1. Dynamics of presynaptic endosomes produced during transmitter release.
    Kadota T; Mizote M; Kadota K
    J Electron Microsc (Tokyo); 1994 Apr; 43(2):62-71. PubMed ID: 8077873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic vesicle increase correlated to potentiation of transmission at the synapse of the cat superior cervical ganglion in vivo.
    Kadota T; Mizote M; Hori M; Fujita M; Kadota K
    J Electron Microsc (Tokyo); 1992 Feb; 41(1):37-45. PubMed ID: 1320092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid recovery of structure and function of the cholinergic synapses in the cat superior cervical ganglion in vivo following stimulation-induced exhaustion.
    Kadota T; Mizote M; Moroi K; Ozaki N; Kadota K
    J Neurocytol; 1993 Sep; 22(9):743-52. PubMed ID: 8270958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency stimuli preferentially release large dense-core vesicles located in the proximity of nonspecialized zones of the presynaptic membrane in sympathetic ganglia.
    Cifuentes F; Montoya M; Morales MA
    Dev Neurobiol; 2008 Mar; 68(4):446-56. PubMed ID: 18172889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic vesicle recycling at two classes of release sites in giant nerve terminals of the embryonic chicken ciliary ganglion.
    Nguyen D; Sargent PB
    J Comp Neurol; 2002 Jun; 448(2):128-37. PubMed ID: 12012425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative and morphological studies on the plasticity of mixed synapses as exemplified by clear, spherical vesicles.
    Saballus R; Schuster T; Ossyra H
    J Hirnforsch; 1984; 25(6):593-601. PubMed ID: 6098604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative ultrastructure of slowly adapting lingual afferent terminals in the principal and oral nuclei in the cat.
    Zhang LF; Moritani M; Honma S; Yoshida A; Shigenaga Y
    Synapse; 2001 Aug; 41(2):96-111. PubMed ID: 11400176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular organization of the presynaptic active zone.
    Schoch S; Gundelfinger ED
    Cell Tissue Res; 2006 Nov; 326(2):379-91. PubMed ID: 16865347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyhedral protein cages encase synaptic vesicles and participate in their attachment to the active zone.
    Zampighi GA; Fisher RS
    J Struct Biol; 1997 Aug; 119(3):347-59. PubMed ID: 9245772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic vesicle pools at diaphragm neuromuscular junctions vary with motoneuron soma, not axon terminal, inactivity.
    Mantilla CB; Rowley KL; Zhan WZ; Fahim MA; Sieck GC
    Neuroscience; 2007 Apr; 146(1):178-89. PubMed ID: 17346898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of nerve terminal events in vivo effecting retrograde transport of vesicles containing neurotrophins or synaptic vesicle components.
    Weible MW; Ozsarac N; Grimes ML; Hendry IA
    J Neurosci Res; 2004 Mar; 75(6):771-81. PubMed ID: 14994338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Quantitative morphologic examination of the vesicle population of mixed synapses--method and significance].
    Saballus R; Schuster T; Ossyra H
    J Hirnforsch; 1982; 23(2):175-90. PubMed ID: 7108197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of synapse formation and maintenance in vivo in the absence of synaptic release.
    Bouwman J; Maia AS; Camoletto PG; Posthuma G; Roubos EW; Oorschot VM; Klumperman J; Verhage M
    Neuroscience; 2004; 126(1):115-26. PubMed ID: 15145078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential changes in synaptic vesicle pools and endosome-like organelles during depolarization near the active zone of central nerve terminals.
    Leenders AG; Scholten G; de Lange RP; Lopes da Silva FH; Ghijsen WE
    Neuroscience; 2002; 109(1):195-206. PubMed ID: 11784710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The architecture of the active zone in the presynaptic nerve terminal.
    Zhai RG; Bellen HJ
    Physiology (Bethesda); 2004 Oct; 19():262-70. PubMed ID: 15381754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synapsin maintains the reserve vesicle pool and spatial segregation of the recycling pool in Drosophila presynaptic boutons.
    Akbergenova Y; Bykhovskaia M
    Brain Res; 2007 Oct; 1178():52-64. PubMed ID: 17904536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in the synaptic vesicles of cat motor cortex axon terminals upon stimulation].
    MaloshevskiÄ­ SG; Lenkov DN; Bragina TA
    Neirofiziologiia; 1975; 7(6):639-46. PubMed ID: 1207847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant reticulospinal synapse in lamprey: molecular links between active and periactive zones.
    Brodin L; Shupliakov O
    Cell Tissue Res; 2006 Nov; 326(2):301-10. PubMed ID: 16786368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic vesicle dynamics in the mossy fiber-CA3 presynaptic terminals of mouse hippocampus.
    Suyama S; Hikima T; Sakagami H; Ishizuka T; Yawo H
    Neurosci Res; 2007 Dec; 59(4):481-90. PubMed ID: 17933408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversification of synaptic strength: presynaptic elements.
    Atwood HL; Karunanithi S
    Nat Rev Neurosci; 2002 Jul; 3(7):497-516. PubMed ID: 12094207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.