BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8078068)

  • 1. A major family of motifs involving G.A mismatches in ribosomal RNA.
    Gautheret D; Konings D; Gutell RR
    J Mol Biol; 1994 Sep; 242(1):1-8. PubMed ID: 8078068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices.
    Elgavish T; Cannone JJ; Lee JC; Harvey SC; Gutell RR
    J Mol Biol; 2001 Jul; 310(4):735-53. PubMed ID: 11453684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting U-turns in ribosomal RNA with comparative sequence analysis.
    Gutell RR; Cannone JJ; Konings D; Gautheret D
    J Mol Biol; 2000 Jul; 300(4):791-803. PubMed ID: 10891269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A story: unpaired adenosine bases in ribosomal RNAs.
    Gutell RR; Cannone JJ; Shang Z; Du Y; Serra MJ
    J Mol Biol; 2000 Dec; 304(3):335-54. PubMed ID: 11090278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs.
    Leontis NB; Westhof E
    J Mol Biol; 1998 Oct; 283(3):571-83. PubMed ID: 9784367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The NMR structure of an internal loop from 23S ribosomal RNA differs from its structure in crystals of 50s ribosomal subunits.
    Shankar N; Kennedy SD; Chen G; Krugh TR; Turner DH
    Biochemistry; 2006 Oct; 45(39):11776-89. PubMed ID: 17002278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural motifs in ribosomal RNAs: implications for RNA design and genomics.
    Zorn J; Gan HH; Shiffeldrim N; Schlick T
    Biopolymers; 2004 Feb; 73(3):340-7. PubMed ID: 14755570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective.
    Gutell RR; Larsen N; Woese CR
    Microbiol Rev; 1994 Mar; 58(1):10-26. PubMed ID: 8177168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs.
    Pasquali S; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(4):1384-98. PubMed ID: 15745998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G.U base pairing motifs in ribosomal RNA.
    Gautheret D; Konings D; Gutell RR
    RNA; 1995 Oct; 1(8):807-14. PubMed ID: 7493326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major centers of motion in the large ribosomal RNAs.
    Paci M; Fox GE
    Nucleic Acids Res; 2015 May; 43(9):4640-9. PubMed ID: 25870411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the rRNA environment of ribosomal protein S5 across the subunit interface and inside the 30 S subunit using tethered Fe(II).
    Culver GM; Heilek GM; Noller HF
    J Mol Biol; 1999 Feb; 286(2):355-64. PubMed ID: 9973556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing.
    Tang TH; Rozhdestvensky TS; d'Orval BC; Bortolin ML; Huber H; Charpentier B; Branlant C; Bachellerie JP; Brosius J; Hüttenhofer A
    Nucleic Acids Res; 2002 Feb; 30(4):921-30. PubMed ID: 11842103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and evolutionary classification of G/U wobble basepairs in the ribosome.
    Mokdad A; Krasovska MV; Sponer J; Leontis NB
    Nucleic Acids Res; 2006; 34(5):1326-41. PubMed ID: 16522645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the reliability of RNA folding using statistical mechanics.
    Huynen M; Gutell R; Konings D
    J Mol Biol; 1997 Apr; 267(5):1104-12. PubMed ID: 9150399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals.
    Nguyenle T; Laurberg M; Brenowitz M; Noller HF
    J Mol Biol; 2006 Jun; 359(5):1235-48. PubMed ID: 16725154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reassessment of the phylogenetic position of the bacterium associated with Whipple's disease and determination of the 16S-23S ribosomal intergenic spacer sequence.
    Maiwald M; Ditton HJ; von Herbay A; Rainey FA; Stackebrandt E
    Int J Syst Bacteriol; 1996 Oct; 46(4):1078-82. PubMed ID: 8863438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the Bacillus stearothermophilus ribosomal protein S15 with 16 S rRNA: II. Specificity determinants of RNA-protein recognition.
    Batey RT; Williamson JR
    J Mol Biol; 1996 Aug; 261(4):550-67. PubMed ID: 8794876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR structures of (rGCUGAGGCU)2 and (rGCGGAUGCU)2: probing the structural features that shape the thermodynamic stability of GA pairs.
    Tolbert BS; Kennedy SD; Schroeder SJ; Krugh TR; Turner DH
    Biochemistry; 2007 Feb; 46(6):1511-22. PubMed ID: 17279616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNase J is involved in the 5'-end maturation of 16S rRNA and 23S rRNA in Sinorhizobium meliloti.
    Madhugiri R; Evguenieva-Hackenberg E
    FEBS Lett; 2009 Jul; 583(14):2339-42. PubMed ID: 19540834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.