BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8078511)

  • 1. Purification, amino-terminal sequence and functional properties of a 64 kDa cytosolic protein from heart muscle capable of modulating calcium transport across the sarcoplasmic reticulum in vitro.
    Xu A; Narayanan N
    Mol Cell Biochem; 1994 Mar; 132(1):7-14. PubMed ID: 8078511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogeny of cytosolic proteins capable of modulating sarcoplasmic reticulum calcium transport in heart muscle.
    Donat ME; Su N; Narayanan N
    Mol Cell Biochem; 1991 Jul; 106(1):41-8. PubMed ID: 1922013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of sarcoplasmic reticulum calcium pump by cytosolic protein(s) endogenous to heart and slow skeletal muscle but not fast skeletal muscle.
    Narayanan N; Newland M; Neudorf D
    Biochim Biophys Acta; 1983 Oct; 735(1):53-66. PubMed ID: 6313055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of heart cytosolic proteins capable of modulating calcium uptake by the sarcoplasmic reticulum. 1. Isolation of a protein with protective activity and its identification as muscle albumin.
    Chiesi M; Guerini D
    Eur J Biochem; 1987 Jan; 162(2):365-70. PubMed ID: 2948823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the ATP-dependent calcium uptake activity of heart sarcolemmal vesicles by endogenous cytosolic proteins.
    Narayanan N; Bedard P; Waraich TS; Godfrey N
    Mol Cell Biochem; 1989 Apr; 86(2):143-53. PubMed ID: 2549389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of 30 kDa calsequestrin-binding protein, which regulates calcium release from sarcoplasmic reticulum of rabbit skeletal muscle.
    Yamaguchi N; Kasai M
    Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):541-7. PubMed ID: 9794793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of heart cytosolic proteins capable of modulating calcium uptake by the sarcoplasmic reticulum. 2. Identification of actin isoforms with inhibitory activity.
    Chiesi M; Schwaller R
    Eur J Biochem; 1987 Jan; 162(2):371-7. PubMed ID: 2433134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of endogenous calcium transport inhibitor from heart muscle on the active calcium uptake and passive calcium release properties of sarcoplasmic reticulum.
    Narayanan N; Bedard P; Waraich TS
    Can J Physiol Pharmacol; 1989 Sep; 67(9):999-1006. PubMed ID: 2598137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid sequence of the amino-terminal 24 kDa fragment of the heavy chain of chicken gizzard myosin.
    Maita T; Onishi H; Yajima E; Matsuda G
    J Biochem; 1987 Jul; 102(1):133-45. PubMed ID: 3312184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification, characterization, and the complete amino acid sequence of porcine pancreatic deoxyribonuclease.
    Paudel HK; Liao TH
    J Biol Chem; 1986 Dec; 261(34):16006-11. PubMed ID: 3782104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complete amino acid sequence of the low molecular weight cytosolic acid phosphatase.
    Camici G; Manao G; Cappugi G; Modesti A; Stefani M; Ramponi G
    J Biol Chem; 1989 Feb; 264(5):2560-7. PubMed ID: 2644264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcolipin, the "proteolipid" of skeletal muscle sarcoplasmic reticulum, is a unique, amphipathic, 31-residue peptide.
    Wawrzynow A; Theibert JL; Murphy C; Jona I; Martonosi A; Collins JH
    Arch Biochem Biophys; 1992 Nov; 298(2):620-3. PubMed ID: 1416990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The primary structure of skeletal muscle myosin heavy chain: III. Sequence of the 22 kDa fragment and the alignment of the 23 kDa, 50 kDa, and 22 kDa fragments.
    Maita T; Miyanishi T; Matsuzono K; Tanioka Y; Matsuda G
    J Biochem; 1991 Jul; 110(1):68-74. PubMed ID: 1939029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle.
    Chu A; Saito A; Fleischer S
    Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements.
    Hofmann SL; Goldstein JL; Orth K; Moomaw CR; Slaughter CA; Brown MS
    J Biol Chem; 1989 Oct; 264(30):18083-90. PubMed ID: 2808365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid sequence of the 203-residue fragment of the heavy chain of chicken gizzard myosin containing the SH1-type cysteine residue.
    Onishi H; Maita T; Miyanishi T; Watanabe S; Matsuda G
    J Biochem; 1986 Dec; 100(6):1433-47. PubMed ID: 3571180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The identification of the phosphorylated 150/160-kDa proteins of sarcoplasmic reticulum, their kinase and their association with the ryanodine receptor.
    Shoshan-Barmatz V; Orr I; Weil S; Meyer H; Varsanyi M; Heilmeyer LM
    Biochim Biophys Acta; 1996 Aug; 1283(1):89-100. PubMed ID: 8765099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle.
    Viner RI; Ferrington DA; Williams TD; Bigelow DJ; Schöneich C
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):657-69. PubMed ID: 10359649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle.
    Martonosi AN
    Physiol Rev; 1984 Oct; 64(4):1240-320. PubMed ID: 6093162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of purified bovine cardiac sarcolemma and potassium-stimulated calcium uptake.
    Flockerzi V; Mewes R; Ruth P; Hofmann F
    Eur J Biochem; 1983 Sep; 135(1):131-42. PubMed ID: 6309517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.