These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 8078511)
1. Purification, amino-terminal sequence and functional properties of a 64 kDa cytosolic protein from heart muscle capable of modulating calcium transport across the sarcoplasmic reticulum in vitro. Xu A; Narayanan N Mol Cell Biochem; 1994 Mar; 132(1):7-14. PubMed ID: 8078511 [TBL] [Abstract][Full Text] [Related]
2. Ontogeny of cytosolic proteins capable of modulating sarcoplasmic reticulum calcium transport in heart muscle. Donat ME; Su N; Narayanan N Mol Cell Biochem; 1991 Jul; 106(1):41-8. PubMed ID: 1922013 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of sarcoplasmic reticulum calcium pump by cytosolic protein(s) endogenous to heart and slow skeletal muscle but not fast skeletal muscle. Narayanan N; Newland M; Neudorf D Biochim Biophys Acta; 1983 Oct; 735(1):53-66. PubMed ID: 6313055 [TBL] [Abstract][Full Text] [Related]
4. Characterization of heart cytosolic proteins capable of modulating calcium uptake by the sarcoplasmic reticulum. 1. Isolation of a protein with protective activity and its identification as muscle albumin. Chiesi M; Guerini D Eur J Biochem; 1987 Jan; 162(2):365-70. PubMed ID: 2948823 [TBL] [Abstract][Full Text] [Related]
5. Regulation of the ATP-dependent calcium uptake activity of heart sarcolemmal vesicles by endogenous cytosolic proteins. Narayanan N; Bedard P; Waraich TS; Godfrey N Mol Cell Biochem; 1989 Apr; 86(2):143-53. PubMed ID: 2549389 [TBL] [Abstract][Full Text] [Related]
6. Identification of 30 kDa calsequestrin-binding protein, which regulates calcium release from sarcoplasmic reticulum of rabbit skeletal muscle. Yamaguchi N; Kasai M Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):541-7. PubMed ID: 9794793 [TBL] [Abstract][Full Text] [Related]
7. Characterization of heart cytosolic proteins capable of modulating calcium uptake by the sarcoplasmic reticulum. 2. Identification of actin isoforms with inhibitory activity. Chiesi M; Schwaller R Eur J Biochem; 1987 Jan; 162(2):371-7. PubMed ID: 2433134 [TBL] [Abstract][Full Text] [Related]
8. Effects of endogenous calcium transport inhibitor from heart muscle on the active calcium uptake and passive calcium release properties of sarcoplasmic reticulum. Narayanan N; Bedard P; Waraich TS Can J Physiol Pharmacol; 1989 Sep; 67(9):999-1006. PubMed ID: 2598137 [TBL] [Abstract][Full Text] [Related]
9. Amino acid sequence of the amino-terminal 24 kDa fragment of the heavy chain of chicken gizzard myosin. Maita T; Onishi H; Yajima E; Matsuda G J Biochem; 1987 Jul; 102(1):133-45. PubMed ID: 3312184 [TBL] [Abstract][Full Text] [Related]
10. Purification, characterization, and the complete amino acid sequence of porcine pancreatic deoxyribonuclease. Paudel HK; Liao TH J Biol Chem; 1986 Dec; 261(34):16006-11. PubMed ID: 3782104 [TBL] [Abstract][Full Text] [Related]
11. The complete amino acid sequence of the low molecular weight cytosolic acid phosphatase. Camici G; Manao G; Cappugi G; Modesti A; Stefani M; Ramponi G J Biol Chem; 1989 Feb; 264(5):2560-7. PubMed ID: 2644264 [TBL] [Abstract][Full Text] [Related]
12. Sarcolipin, the "proteolipid" of skeletal muscle sarcoplasmic reticulum, is a unique, amphipathic, 31-residue peptide. Wawrzynow A; Theibert JL; Murphy C; Jona I; Martonosi A; Collins JH Arch Biochem Biophys; 1992 Nov; 298(2):620-3. PubMed ID: 1416990 [TBL] [Abstract][Full Text] [Related]
13. The primary structure of skeletal muscle myosin heavy chain: III. Sequence of the 22 kDa fragment and the alignment of the 23 kDa, 50 kDa, and 22 kDa fragments. Maita T; Miyanishi T; Matsuzono K; Tanioka Y; Matsuda G J Biochem; 1991 Jul; 110(1):68-74. PubMed ID: 1939029 [TBL] [Abstract][Full Text] [Related]
14. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle. Chu A; Saito A; Fleischer S Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161 [TBL] [Abstract][Full Text] [Related]
15. Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. Hofmann SL; Goldstein JL; Orth K; Moomaw CR; Slaughter CA; Brown MS J Biol Chem; 1989 Oct; 264(30):18083-90. PubMed ID: 2808365 [TBL] [Abstract][Full Text] [Related]
16. Amino acid sequence of the 203-residue fragment of the heavy chain of chicken gizzard myosin containing the SH1-type cysteine residue. Onishi H; Maita T; Miyanishi T; Watanabe S; Matsuda G J Biochem; 1986 Dec; 100(6):1433-47. PubMed ID: 3571180 [TBL] [Abstract][Full Text] [Related]
17. The identification of the phosphorylated 150/160-kDa proteins of sarcoplasmic reticulum, their kinase and their association with the ryanodine receptor. Shoshan-Barmatz V; Orr I; Weil S; Meyer H; Varsanyi M; Heilmeyer LM Biochim Biophys Acta; 1996 Aug; 1283(1):89-100. PubMed ID: 8765099 [TBL] [Abstract][Full Text] [Related]
18. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Viner RI; Ferrington DA; Williams TD; Bigelow DJ; Schöneich C Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):657-69. PubMed ID: 10359649 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Martonosi AN Physiol Rev; 1984 Oct; 64(4):1240-320. PubMed ID: 6093162 [TBL] [Abstract][Full Text] [Related]