BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 8078526)

  • 1. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The presence of rotenone-sensitive NADH dehydrogenase in the long slender bloodstream and the procyclic forms of Trypanosoma brucei brucei.
    Beattie DS; Howton MM
    Eur J Biochem; 1996 Nov; 241(3):888-94. PubMed ID: 8944779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of complex I, rotenone-sensitive NADH: ubiquinone oxidoreductase, from the procyclic forms of Trypanosoma brucei.
    Fang J; Wang Y; Beattie DS
    Eur J Biochem; 2001 May; 268(10):3075-82. PubMed ID: 11358527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
    Fang J; Beattie DS
    Mol Biochem Parasitol; 2002 Aug; 123(2):135-42. PubMed ID: 12270629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes.
    Turrens JF
    Biochem J; 1989 Apr; 259(2):363-8. PubMed ID: 2719653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase.
    Besteiro S; Biran M; Biteau N; Coustou V; Baltz T; Canioni P; Bringaud F
    J Biol Chem; 2002 Oct; 277(41):38001-12. PubMed ID: 12138089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei.
    Verner Z; Skodová I; Poláková S; Durišová-Benkovičová V; Horváth A; Lukeš J
    Parasitology; 2013 Mar; 140(3):328-37. PubMed ID: 23111000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial hydrogen peroxide formation and the fumarate reductase of Hymenolepis diminuta.
    Fioravanti CF; Reisig JM
    J Parasitol; 1990 Aug; 76(4):457-63. PubMed ID: 2380854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the respiratory chain of Leishmania donovani promastigotes.
    Santhamma KR; Bhaduri A
    Mol Biochem Parasitol; 1995 Dec; 75(1):43-53. PubMed ID: 8720174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei.
    Coustou V; Besteiro S; Rivière L; Biran M; Biteau N; Franconi JM; Boshart M; Baltz T; Bringaud F
    J Biol Chem; 2005 Apr; 280(17):16559-70. PubMed ID: 15718239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic differentiation of bloodstream forms of Trypanosoma brucei brucei into procyclic forms in hemin-depleted medium and in the presence of respiratory inhibitors.
    Markos A; Blahůsková A; Kalous M
    Folia Parasitol (Praha); 1989; 36(4):301-6. PubMed ID: 2562170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An antimycin-insensitive succinate-cytochrome c reductase activity in pure reconstitutively active succinate dehydrogenase.
    Yu L; McCurley JP; Yu CA
    Biochim Biophys Acta; 1987 Aug; 893(1):75-82. PubMed ID: 3038186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria.
    Wilson RH; Hanson JB
    Plant Physiol; 1969 Sep; 44(9):1335-41. PubMed ID: 5379109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strongyloides ratti: mitochondrial enzyme activities of the classical electron transport pathway in the infective (L3) larvae.
    Armson A; Grubb WB; Mendis AH
    Int J Parasitol; 1995 Feb; 25(2):257-60. PubMed ID: 7622333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria of mammalian Plasmodium spp.
    Fry M; Beesley JE
    Parasitology; 1991 Feb; 102 Pt 1():17-26. PubMed ID: 2038500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization.
    Fang J; Beattie DS
    Biochemistry; 2002 Mar; 41(9):3065-72. PubMed ID: 11863445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic differentiation of bloodstream forms of Trypanosoma brucei brucei into procyclic forms. Effect of hydroxyurea, arabinosyl adenine, and serum omission.
    Markos A; Blahůsková A; Kalous M; Bysková E; Byska K; Nohýnková E
    Folia Parasitol (Praha); 1989; 36(3):225-38. PubMed ID: 2555290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial sulfide oxidation in Arenicola marina. Evidence for alternative electron pathways.
    Völkel S; Grieshaber MK
    Eur J Biochem; 1996 Jan; 235(1-2):231-7. PubMed ID: 8631334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.