These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 8078767)
1. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition. Xodo L; Alunni-Fabbroni M; Manzini G; Quadrifoglio F Nucleic Acids Res; 1994 Aug; 22(16):3322-30. PubMed ID: 8078767 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of T7 RNA polymerase transcription by phosphate and phosphorothioate triplex-forming oligonucleotides targeted to a R.Y site downstream from the promoter. Alunni-Fabbroni M; Manfioletti G; Manzini G; Xodo LE Eur J Biochem; 1994 Dec; 226(3):831-9. PubMed ID: 7813472 [TBL] [Abstract][Full Text] [Related]
3. Effect of 5-methylcytosine on the stability of triple-stranded DNA--a thermodynamic study. Xodo LE; Manzini G; Quadrifoglio F; van der Marel GA; van Boom JH Nucleic Acids Res; 1991 Oct; 19(20):5625-31. PubMed ID: 1945840 [TBL] [Abstract][Full Text] [Related]
4. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure. Svinarchuk F; Monnot M; Merle A; Malvy C; Fermandjian S Nucleic Acids Res; 1995 Oct; 23(19):3831-6. PubMed ID: 7479024 [TBL] [Abstract][Full Text] [Related]
5. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex. Walter A; Schütz H; Simon H; Birch-Hirschfeld E J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482 [TBL] [Abstract][Full Text] [Related]
6. Guanine-rich oligonucleotides targeted to a critical R . Y site located in the Ki-ras promoter. The effect of competing self-structures on triplex formation. Alunni-Fabbroni M; Manzini G; Quadrifoglio F; Xodo LE Eur J Biochem; 1996 May; 238(1):143-51. PubMed ID: 8665931 [TBL] [Abstract][Full Text] [Related]
7. Anti-gene effect in live cells of AG motif triplex-forming oligonucleotides containing an increasing number of phosphorothioate linkages. Cogoi S; Rapozzi V; Quadrifoglio F; Xodo L Biochemistry; 2001 Feb; 40(5):1135-43. PubMed ID: 11170438 [TBL] [Abstract][Full Text] [Related]
8. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides. Xodo LE; Alunni-Fabbroni M; Manzini G J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209 [TBL] [Abstract][Full Text] [Related]
9. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes. Sugimoto N; Wu P; Hara H; Kawamoto Y Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909 [TBL] [Abstract][Full Text] [Related]
10. Effect of selective cytosine methylation and hydration on the conformations of DNA triple helices containing a TTTT loop structure by FT-IR spectroscopy. Fang Y; Bai C; Wei Y; Lin SB; Kan L J Biomol Struct Dyn; 1995 Dec; 13(3):471-82. PubMed ID: 8825727 [TBL] [Abstract][Full Text] [Related]
11. Sequence specificity in triple-helix formation: experimental and theoretical studies of the effect of mismatches on triplex stability. Mergny JL; Sun JS; Rougée M; Montenay-Garestier T; Barcelo F; Chomilier J; Hélène C Biochemistry; 1991 Oct; 30(40):9791-8. PubMed ID: 1911764 [TBL] [Abstract][Full Text] [Related]
12. Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior. Manzini G; Xodo LE; Gasparotto D; Quadrifoglio F; van der Marel GA; van Boom JH J Mol Biol; 1990 Jun; 213(4):833-43. PubMed ID: 2359124 [TBL] [Abstract][Full Text] [Related]
13. Hoogsteen DNA duplexes of 3'-3'- and 5'-5'-linked oligonucleotides and trip formation with RNA and DNA pyrimidine single strands: experimental and molecular modeling studies. Kandimalla ER; Agrawal S Biochemistry; 1996 Dec; 35(48):15332-9. PubMed ID: 8952484 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285 [TBL] [Abstract][Full Text] [Related]
16. Antitumor polycyclic acridines. Part 16. Triplex DNA as a target for DNA-binding polycyclic acridine derivatives. Missailidis S; Modi C; Trapani V; Laughton CA; Stevens MF Oncol Res; 2005; 15(2):95-105. PubMed ID: 16119007 [TBL] [Abstract][Full Text] [Related]
17. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides. Musso M; Van Dyke MW Nucleic Acids Res; 1995 Jun; 23(12):2320-7. PubMed ID: 7610062 [TBL] [Abstract][Full Text] [Related]
18. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Pilch DS; Levenson C; Shafer RH Biochemistry; 1991 Jun; 30(25):6081-8. PubMed ID: 2059618 [TBL] [Abstract][Full Text] [Related]
19. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides. Michel T; Debart F; Heitz F; Vasseur JJ Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553 [TBL] [Abstract][Full Text] [Related]
20. 7,8-Dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helices. Triplex formation without hypochromicity. Jetter MC; Hobbs FW Biochemistry; 1993 Apr; 32(13):3249-54. PubMed ID: 8461291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]