These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8078778)

  • 1. Tandemly repeated pentanucleotides in DNA sequences of eucaryotes.
    Borstnik B; Pumpernik D; Lukman D; Ugarković D; Plohl M
    Nucleic Acids Res; 1994 Aug; 22(16):3412-7. PubMed ID: 8078778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite.
    Durfy SJ; Willard HF
    J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor.
    Benslimane AA; Dron M; Hartmann C; Rode A
    Nucleic Acids Res; 1986 Oct; 14(20):8111-9. PubMed ID: 3774553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2005 Apr; 349():153-64. PubMed ID: 15777738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandemly repeated transgenes of the human minisatellite MS32 (D1S8), with novel mouse gamma satellite integration.
    Allen MJ; Jeffreys AJ; Surani MA; Barton S; Norris ML; Collick A
    Nucleic Acids Res; 1994 Aug; 22(15):2976-81. PubMed ID: 8065909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetitive satellite-like sequences are present within or upstream from 3 avian protein-coding genes.
    Maroteaux L; Heilig R; Dupret D; Mandel JL
    Nucleic Acids Res; 1983 Mar; 11(5):1227-43. PubMed ID: 6828383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of beta satellite DNA sequences: evidence for duplication-mediated repeat amplification and spreading.
    Cardone MF; Ballarati L; Ventura M; Rocchi M; Marozzi A; Ginelli E; Meneveri R
    Mol Biol Evol; 2004 Sep; 21(9):1792-9. PubMed ID: 15201396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of a fish centromeric satellite DNA.
    Garrido-Ramos MA; Jamilena M; Lozano R; Ruiz Rejón C; Ruiz Rejón M
    Cytogenet Cell Genet; 1994; 65(4):233-7. PubMed ID: 8258296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly conserved repetitive DNA sequences are present at human centromeres.
    Grady DL; Ratliff RL; Robinson DL; McCanlies EC; Meyne J; Moyzis RK
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1695-9. PubMed ID: 1542662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences.
    Tek AL; Song J; Macas J; Jiang J
    Genetics; 2005 Jul; 170(3):1231-8. PubMed ID: 15911575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews.
    Fumagalli L; Taberlet P; Favre L; Hausser J
    Mol Biol Evol; 1996 Jan; 13(1):31-46. PubMed ID: 8583904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent amplification of an alpha satellite DNA in humans.
    Gray KM; White JW; Costanzi C; Gillespie D; Schroeder WT; Calabretta B; Saunders GF
    Nucleic Acids Res; 1985 Jan; 13(2):521-35. PubMed ID: 2987800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion.
    Liao D; Pavelitz T; Kidd JR; Kidd KK; Weiner AM
    EMBO J; 1997 Feb; 16(3):588-98. PubMed ID: 9034341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rolling replication of short DNA circles.
    Fire A; Xu SQ
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4641-5. PubMed ID: 7753856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequence of satellite I and II DNA from alpaca (Lama pacos) genome.
    Sałuda-Gorgul A; Jaworski J; Greger J
    Acta Biochim Pol; 1990; 37(2):283-97. PubMed ID: 2072986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human satellite I sequences include a male specific 2.47 kb tandemly repeated unit containing one Alu family member per repeat.
    Frommer M; Prosser J; Vincent PC
    Nucleic Acids Res; 1984 Mar; 12(6):2887-900. PubMed ID: 6324132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences.
    Brohede J; Ellegren H
    Proc Biol Sci; 1999 Apr; 266(1421):825-33. PubMed ID: 10343406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid isolation of DNA sequences flanking microsatellite repeats.
    Rowe PS; Francis F; Goulding J
    Nucleic Acids Res; 1994 Nov; 22(23):5135-6. PubMed ID: 7800510
    [No Abstract]   [Full Text] [Related]  

  • 20. Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of eastern Pacific abalone.
    Muchmore ME; Moy GW; Swanson WJ; Vacquier VD
    Mol Mar Biol Biotechnol; 1998 Mar; 7(1):1-6. PubMed ID: 9597772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.