These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 807911)

  • 1. Biosynthetic pathway of ribothymidine in B. subtilis and M. lysodeikticus involving different coenzymes for transfer RNA and ribosomal RNA.
    Schmidt W; Arnold HH; Kersten H
    Nucleic Acids Res; 1975 Jul; 2(7):1043-51. PubMed ID: 807911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of ribothymidine in the transfer RNA of Streptococcus faecalis and Bacillus subtilis. A methylation of RNA involving 5,10-methylenetetrahydrofolate.
    Delk AS; Romeo JM; Nagle DP; Rabinowitz JC
    J Biol Chem; 1976 Dec; 251(23):7649-56. PubMed ID: 826533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the tetrahydrofolate-dependent biosynthesis of ribothymidine in tRNAs of B. subtilis and M. lysodeikticus by trimethoprim.
    Arnold HH; Kersten H
    FEBS Lett; 1975 May; 53(2):258-61. PubMed ID: 806472
    [No Abstract]   [Full Text] [Related]  

  • 4. Occurrence and biosynthesis of ribothymidine in tRNAs of B. subtilis.
    Arnold HH; Schmidt W; Kersten H
    FEBS Lett; 1975 Mar; 52(1):62-5. PubMed ID: 164388
    [No Abstract]   [Full Text] [Related]  

  • 5. On the biosynthesis of 5-methoxyuridine and uridine-5-oxyacetic acid in specific procaryotic transfer RNAs.
    Murao K; Ishikura H; Albani M; Kersten H
    Nucleic Acids Res; 1978 Apr; 5(4):1273-81. PubMed ID: 418384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The occurrence of a transmethylation reaction not involving S-adenosylmethionine in the formation of ribothymidine in Bacillus subtilis transfer-RNA.
    Romeo JM; Delk AS; Rabinowitz JC
    Biochem Biophys Res Commun; 1974 Dec; 61(4):1256-61. PubMed ID: 4218103
    [No Abstract]   [Full Text] [Related]  

  • 7. Tetrahydrofolate-dependent biosynthesis of ribothymidine in transfer ribonucleic acids of Gram-positive bacteria.
    Schmidt W; Arnold HH; Kersten H
    J Bacteriol; 1977 Jan; 129(1):15-21. PubMed ID: 318638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylenetetrahydrofolate-dependent biosynthesis of ribothymidine in transfer RNA of Streptococcus faecalis. Evidence for reduction of the 1-carbon unit by FADH2.
    Delk AS; Nagle DP; Rabinowitz JC
    J Biol Chem; 1980 May; 255(10):4387-90. PubMed ID: 6768721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m5U methyltransferases.
    Auxilien S; Rasmussen A; Rose S; Brochier-Armanet C; Husson C; Fourmy D; Grosjean H; Douthwaite S
    RNA; 2011 Jan; 17(1):45-53. PubMed ID: 21051506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Undermethylated transfer ribonucleic acid from a relaxed strain of Bacillus subtilis: construction of the strain and analysis of the transfer ribonucleic acid.
    Keisel N; Vold B
    J Bacteriol; 1976 Apr; 126(1):294-9. PubMed ID: 816774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site and substrate specificity of the ermC 23S rRNA methyltransferase.
    Denoya CD; Dubnau D
    J Bacteriol; 1987 Aug; 169(8):3857-60. PubMed ID: 2440853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of S-adenosylmethionine: ribosomal ribonucleic acid-adenine (N 6 -) methyltransferase of Escherichia coli strain B.
    Sipe JE; Anderson WM; Remy CN; Love SH
    J Bacteriol; 1972 Apr; 110(1):81-91. PubMed ID: 4622906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA.
    Desmolaize B; Fabret C; Brégeon D; Rose S; Grosjean H; Douthwaite S
    Nucleic Acids Res; 2011 Nov; 39(21):9368-75. PubMed ID: 21824914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel gene encoding a flavin-dependent tRNA:m5U methyltransferase in bacteria--evolutionary implications.
    Urbonavicius J; Skouloubris S; Myllykallio H; Grosjean H
    Nucleic Acids Res; 2005; 33(13):3955-64. PubMed ID: 16027442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of S-adenosylmethionine impacts on ribosome biogenesis through hypomodification of a single rRNA methylation.
    Ishiguro K; Arai T; Suzuki T
    Nucleic Acids Res; 2019 May; 47(8):4226-4239. PubMed ID: 30799486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evolutionary study of the methylation of transfer and ribosomal ribonucleic acid in prokaryote and eukaryote organisms.
    Klagsbrun M
    J Biol Chem; 1973 Apr; 248(7):2612-20. PubMed ID: 4633356
    [No Abstract]   [Full Text] [Related]  

  • 17. The occurrence of ribothymidine, 1-methyladenosine, methylated guanosines and the corresponding methyltransferases in E. coli and Bacillus subtilis.
    Arnold H; Kersten H
    FEBS Lett; 1973 Oct; 36(1):34-8. PubMed ID: 4201118
    [No Abstract]   [Full Text] [Related]  

  • 18. Function of modified nucleosides 7-methylguanosine, ribothymidine, and 2-thiomethyl-N6-(isopentenyl)adenosine in procaryotic transfer ribonucleic acid.
    Hoburg A; Aschhoff HJ; Kersten H; Manderschied U; Gassen HG
    J Bacteriol; 1979 Nov; 140(2):408-14. PubMed ID: 115845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheat germ tRNAs containing uridine in place of ribothymidine: a characterization of an unusual class of eukaryotic tRNAs.
    Marcu K; Marcu D; Dudock B
    Nucleic Acids Res; 1978 Apr; 5(4):1075-92. PubMed ID: 652515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, in vitro transcription, and biological activity of Escherichia coli 23S ribosomal RNA.
    Weitzmann CJ; Cunningham PR; Ofengand J
    Nucleic Acids Res; 1990 Jun; 18(12):3515-20. PubMed ID: 2194163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.