BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8079360)

  • 1. Determination of tissue partition coefficients for volatile tissue-reactive chemicals: acrylonitrile and its metabolite 2-cyanoethylene oxide.
    Teo SK; Kedderis GL; Gargas ML
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):92-6. PubMed ID: 8079360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rodent tissue distribution of 2-cyanoethylene oxide, the epoxide metabolite of acrylonitrile.
    Kedderis GL; Batra R; Held SD; Loos MA; Teo SK
    Toxicol Lett; 1993 Jul; 69(1):25-30. PubMed ID: 8356564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refinement and verification of the physiologically based dosimetry description for acrylonitrile in rats.
    Kedderis GL; Teo SK; Batra R; Held SD; Gargas ML
    Toxicol Appl Pharmacol; 1996 Oct; 140(2):422-35. PubMed ID: 8887460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiologically based pharmacokinetic model parameter estimation and sensitivity and variability analyses for acrylonitrile disposition in humans.
    Sweeney LM; Gargas ML; Strother DE; Kedderis GL
    Toxicol Sci; 2003 Jan; 71(1):27-40. PubMed ID: 12520073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiologically based dosimetry description of acrylonitrile and cyanoethylene oxide in the rat.
    Gargas ML; Andersen ME; Teo SK; Batra R; Fennell TR; Kedderis GL
    Toxicol Appl Pharmacol; 1995 Oct; 134(2):185-94. PubMed ID: 7570594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugation of acrylonitrile and 2-cyanoethylene oxide with hepatic glutathione.
    Kedderis GL; Batra R; Turner MJ
    Toxicol Appl Pharmacol; 1995 Nov; 135(1):9-17. PubMed ID: 7482544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species comparison of acrylonitrile epoxidation by microsomes from mice, rats and humans: relationship to epoxide concentrations in mouse and rat blood.
    Roberts AE; Kedderis GL; Turner MJ; Rickert DE; Swenberg JA
    Carcinogenesis; 1991 Mar; 12(3):401-4. PubMed ID: 2009586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of DNA Adducts and Mutagenic Potency and Specificity in Rats Exposed to Acrylonitrile.
    Walker VE; Fennell TR; Walker DM; Bauer MJ; Upton PB; Douglas GR; Swenberg JA
    Chem Res Toxicol; 2020 Jul; 33(7):1609-1622. PubMed ID: 32529823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species differences in the hydrolysis of 2-cyanoethylene oxide, the epoxide metabolite of acrylonitrile.
    Kedderis GL; Batra R
    Carcinogenesis; 1993 Apr; 14(4):685-9. PubMed ID: 8472333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dose-dependent urinary excretion of acrylonitrile metabolites by rats and mice.
    Kedderis GL; Sumner SC; Held SD; Batra R; Turner MJ; Roberts AE; Fennell TR
    Toxicol Appl Pharmacol; 1993 Jun; 120(2):288-97. PubMed ID: 8511799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolism of beta-chloroprene: preliminary in-vitro studies using liver microsomes.
    Himmelstein MW; Carpenter SC; Hinderliter PM; Snow TA; Valentine R
    Chem Biol Interact; 2001 Jun; 135-136():267-84. PubMed ID: 11397396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of models for the estimation of biological partition coefficients.
    Payne MP; Kenny LC
    J Toxicol Environ Health A; 2002 Jul; 65(13):897-931. PubMed ID: 12133236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rat tissue and blood partition coefficients for n-alkanes (C8 to C12).
    Smith AQ; Campbell JL; Keys DA; Fisher JW
    Int J Toxicol; 2005; 24(1):35-41. PubMed ID: 15981738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physiologically based description of ethylene oxide dosimetry in the rat.
    Krishnan K; Gargas ML; Fennell TR; Andersen ME
    Toxicol Ind Health; 1992; 8(3):121-40. PubMed ID: 1502695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving cancer dose-response characterization by using physiologically based pharmacokinetic modeling: an analysis of pooled data for acrylonitrile-induced brain tumors to assess cancer potency in the rat.
    Kirman CR; Hays SM; Kedderis GL; Gargas ML; Strother DE
    Risk Anal; 2000 Feb; 20(1):135-51. PubMed ID: 10795346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo interaction of acrylonitrile and 2-cyanoethylene oxide with DNA in rats.
    Hogy LL; Guengerich FP
    Cancer Res; 1986 Aug; 46(8):3932-8. PubMed ID: 2425936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanistic algorithm for predicting blood:air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin.
    Poulin P; Krishnan K
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):131-7. PubMed ID: 8560466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues.
    Gargas ML; Burgess RJ; Voisard DE; Cason GH; Andersen ME
    Toxicol Appl Pharmacol; 1989 Mar; 98(1):87-99. PubMed ID: 2929023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glutathione depletion on the uptake of acrylonitrile vapors and on its irreversible association with tissue macromolecules.
    Pilon D; Roberts AE; Rickert DE
    Toxicol Appl Pharmacol; 1988 Sep; 95(2):265-78. PubMed ID: 2458635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach for incorporating tissue composition data into physiologically based pharmacokinetic models.
    Pelekis M; Poulin P; Krishnan K
    Toxicol Ind Health; 1995; 11(5):511-22. PubMed ID: 8677516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.