BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 8080270)

  • 1. Rab2 utilizes glyceraldehyde-3-phosphate dehydrogenase and protein kinase C{iota} to associate with microtubules and to recruit dynein.
    Tisdale EJ; Azizi F; Artalejo CR
    J Biol Chem; 2009 Feb; 284(9):5876-84. PubMed ID: 19106097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase.
    Modun B; Williams P
    Infect Immun; 1999 Mar; 67(3):1086-92. PubMed ID: 10024547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Autophagy by Nuclear GAPDH and Its Aggregates in Cancer and Neurodegenerative Disorders.
    Butera G; Mullappilly N; Masetto F; Palmieri M; Scupoli MT; Pacchiana R; Donadelli M
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31027346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications.
    Semenyuk P; Muronetz V
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30871103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance.
    Parker AL; Teo WS; McCarroll JA; Kavallaris M
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28677634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sweet side of RNA regulation: glyceraldehyde-3-phosphate dehydrogenase as a noncanonical RNA-binding protein.
    White MR; Garcin ED
    Wiley Interdiscip Rev RNA; 2016; 7(1):53-70. PubMed ID: 26564736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bypassing hazard of housekeeping genes: their evaluation in rat granule neurons treated with cerebrospinal fluid of multiple sclerosis subjects.
    Mathur D; Urena-Peralta JR; Lopez-Rodas G; Casanova B; Coret-Ferrer F; Burgal-Marti M
    Front Cell Neurosci; 2015; 9():375. PubMed ID: 26441545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dimer interface mutation in glyceraldehyde-3-phosphate dehydrogenase regulates its binding to AU-rich RNA.
    White MR; Khan MM; Deredge D; Ross CR; Quintyn R; Zucconi BE; Wysocki VH; Wintrode PL; Wilson GM; Garcin ED
    J Biol Chem; 2015 Jan; 290(3):1770-85. PubMed ID: 25451934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubules and their role in cellular stress in cancer.
    Parker AL; Kavallaris M; McCarroll JA
    Front Oncol; 2014; 4():153. PubMed ID: 24995158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1.
    Marino N; Marshall JC; Steeg PS
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Oct; 384(4-5):351-62. PubMed ID: 21713383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short synthetic polyelectrolytes destabilize proteins most efficiently.
    Stogov SV; Muronetz VI; Izumrudov VA
    Dokl Biochem Biophys; 2009; 427():187-90. PubMed ID: 19817133
    [No Abstract]   [Full Text] [Related]  

  • 12. Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation.
    Demarse NA; Ponnusamy S; Spicer EK; Apohan E; Baatz JE; Ogretmen B; Davies C
    J Mol Biol; 2009 Dec; 394(4):789-803. PubMed ID: 19800890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding one's way in proteomics: a protein species nomenclature.
    Schlüter H; Apweiler R; Holzhütter HG; Jungblut PR
    Chem Cent J; 2009 Sep; 3():11. PubMed ID: 19740416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules.
    Andrade J; Pearce ST; Zhao H; Barroso M
    Biochem J; 2004 Dec; 384(Pt 2):327-36. PubMed ID: 15312048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proliferative and nutritional dependent regulation of glyceraldehyde-3-phosphate dehydrogenase expression in the rat liver.
    Corbin IR; Gong Y; Zhang M; Minuk GY
    Cell Prolif; 2002 Jun; 35(3):173-82. PubMed ID: 12027953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cotransport of glyceraldehyde-3-phosphate dehydrogenase and actin in axons of chicken motoneurons.
    Yuan A; Mills RG; Bamburg JR; Bray JJ
    Cell Mol Neurobiol; 1999 Dec; 19(6):733-44. PubMed ID: 10456234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of NAD-dependent dehydrogenases with human erythrocyte membranes. Evidence that D-glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase are catalytically active in a membrane-bound state.
    Muronetz VI; Shcherbatova NA; Nagradova NK
    Appl Biochem Biotechnol; 1996; 61(1-2):39-46. PubMed ID: 9100343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding constants and stoichiometries of glyceraldehyde 3-phosphate dehydrogenase-tubulin complexes.
    Muronetz VI; Wang ZX; Keith TJ; Knull HR; Srivastava DK
    Arch Biochem Biophys; 1994 Sep; 313(2):253-60. PubMed ID: 8080270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of erythrocyte membranes and tubulin on the activity of NAD-dependent dehydrogenases].
    Shcherbatova NA; Nagradova NK; Muronets VI
    Biokhimiia; 1996 Aug; 61(8):1512-25. PubMed ID: 8962925
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.