BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8081451)

  • 21. Pentoxifylline. A hydroxyl radical scavenger.
    Freitas JP; Filipe PM
    Biol Trace Elem Res; 1995; 47(1-3):307-11. PubMed ID: 7779563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate.
    Gutteridge JM
    Biochem J; 1984 Dec; 224(3):761-7. PubMed ID: 6098266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidative damage to fibronectin. II. The effect of H2O2 and the hydroxyl radical.
    Vissers MC; Winterbourn CC
    Arch Biochem Biophys; 1991 Mar; 285(2):357-64. PubMed ID: 1654773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative sugar degradation by (OH). produced by the iron-driven Fenton reaction and gamma radiolysis.
    Franzini E; Sellak H; Hakim J; Pasquier C
    Arch Biochem Biophys; 1994 Mar; 309(2):261-5. PubMed ID: 8135536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EPR spin trapping and 2-deoxyribose degradation studies of the effect of pyridoxal isonicotinoyl hydrazone (PIH) on *OH formation by the Fenton reaction.
    Hermes-Lima M; Santos NC; Yan J; Andrews M; Schulman HM; Ponka P
    Biochim Biophys Acta; 1999 Feb; 1426(3):475-82. PubMed ID: 10076064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of rate constants for the reaction of hydroxyl radicals with some purines and pyrimidines using sunlight.
    Joseph JM; Aravindakumar CT
    J Biochem Biophys Methods; 2000 Mar; 42(3):115-24. PubMed ID: 10737217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of some nonsteroid antiinflammatory drugs on Fenton-reaction initiated degradation of 2-deoxy-D-ribose].
    Rozmer Z; Perjési P
    Acta Pharm Hung; 2005; 75(2):69-75. PubMed ID: 16318231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method.
    Biaglow JE; Manevich Y; Uckun F; Held KD
    Free Radic Biol Med; 1997; 22(7):1129-38. PubMed ID: 9098085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Antioxidant and prooxidant properties of the ascorbic acid, dihydroquercetine and mexidol in the radical reactions induced by the ionizing radiation and chemical reagents].
    Riabchenko NI; Riabchenko VI; Ivannik BP; Dzikovskaia LA; Sin'kova RV; Grosheva IP; Degtiareva ES; Ivanova TI
    Radiats Biol Radioecol; 2010; 50(2):186-94. PubMed ID: 20464967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ability of scavengers to distinguish OH. production in the iron-catalyzed Haber-Weiss reaction: comparison of four assays for OH.
    Winterbourn CC
    Free Radic Biol Med; 1987; 3(1):33-9. PubMed ID: 3040537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chelated iron-catalyzed OH. formation from paraquat radicals and H2O2: mechanism of formate oxidation.
    Sutton HC; Winterbourn CC
    Arch Biochem Biophys; 1984 Nov; 235(1):106-15. PubMed ID: 6093704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates.
    Vile GF; Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction.
    Mello Filho AC; Meneghini R
    Biochim Biophys Acta; 1984 Feb; 781(1-2):56-63. PubMed ID: 6320896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of the deoxyribose test to detect strong iron binding.
    Sadowska-Bartosz I; Galiniak S; Bartosz G
    Acta Biochim Pol; 2017; 64(1):195-198. PubMed ID: 27991936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyridoxal isonicotinoyl hydrazone inhibits iron-induced ascorbate oxidation and ascorbyl radical formation.
    Maurício AQ; Lopes GK; Gomes CS; Oliveira RG; Alonso A; Hermes-Lima M
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):15-24. PubMed ID: 12595068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The antioxidant and prooxidant activity of some B vitamins and vitamin-like compounds.
    Hu ML; Chen YK; Lin YF
    Chem Biol Interact; 1995 Jun; 97(1):63-73. PubMed ID: 7767942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydroxyl radical reactions and the radical scavenging activity of β-carboline alkaloids.
    Herraiz T; Galisteo J
    Food Chem; 2015 Apr; 172():640-9. PubMed ID: 25442601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydroxyl radical formation from the auto-reduction of a ferric citrate complex.
    Gutteridge JM
    Free Radic Biol Med; 1991; 11(4):401-6. PubMed ID: 1665838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper + zinc and manganese superoxide dismutases inhibit deoxyribose degradation by the superoxide-driven Fenton reaction at two different stages. Implications for the redox states of copper and manganese.
    Gutteridge JM; Bannister JV
    Biochem J; 1986 Feb; 234(1):225-8. PubMed ID: 3010953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.