BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8081659)

  • 1. Substrate utilization by Rana ridibunda erythrocytes.
    Kaloyianni M; Moutou K
    Comp Biochem Physiol Biochem Mol Biol; 1994 Jul; 108(3):357-66. PubMed ID: 8081659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of adenosine on glucose metabolism of Rana ridibunda erythrocytes.
    Kaloyianni M; Michaelidis B; Moutou K
    J Exp Biol; 1993 Apr; 177():41-50. PubMed ID: 8487000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and kinetic properties of phosphofructokinase from Rana ridibunda erythrocytes.
    Kaloyianni M; Kotinis K; Gounaris EG
    Comp Biochem Physiol Biochem Mol Biol; 1994 Mar; 107(3):479-87. PubMed ID: 7749616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Diagnostic value of detection of blood levels of lactate, pyruvate and 2,3-diphosphoglycerate in children with diabetes mellitus].
    Marchenko LF; Baturin AA; Terent'eva EA
    Pediatriia; 1991; (2):26-30. PubMed ID: 1905395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between glucose concentration and rate of lactate production by human erythrocytes in an open perfusion system.
    Kuchel PW; Chapman BE; Lovric VA; Raftos JE; Stewart IM; Thorburn DR
    Biochim Biophys Acta; 1984 Oct; 805(2):191-203. PubMed ID: 6487659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The participation of energy substrates in the control of meiotic maturation in murine oocytes.
    Downs SM; Mastropolo AM
    Dev Biol; 1994 Mar; 162(1):154-68. PubMed ID: 8125183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI; Lapin AV; Gusev GP
    Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An incubation medium for the elevation of adenosine triphosphate and 2,3-diphosphoglycerate in fresh and long-preserved human erythrocytes.
    Rubinstein D; Warrendorf E
    Can J Biochem; 1975 Jun; 53(6):671-8. PubMed ID: 1139405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic effects and cellular volume responses induced by noradrenaline in nucleated erythrocytes.
    Kaloyianni M; Giannisis G; Gavriil P; Boukla A
    J Exp Zool; 1997 Nov; 279(4):337-46. PubMed ID: 9360315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Xylitol metabolism in human erythrocytes].
    Quadflieg KH; Brand K
    Z Ernahrungswiss; 1975 Dec; 14(4):268-71. PubMed ID: 1229165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrocortisone on the synthesis of 2,3-diphosphoglycerate in human erythrocytes.
    Oimomi M; Yoshimura Y; Kubota S; Tanke G; Takagi K; Baba S
    Transfusion; 1982; 22(4):266-8. PubMed ID: 7101418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Characteristics of the structuro-functional properties and energy metabolism of erythrocytes during space flights of different duration].
    Ushakov AS; Kozinets GI; Ivanova SM; Matvienko VP
    Kosm Biol Aviakosm Med; 1982; 16(1):34-7. PubMed ID: 7062696
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of increasing the intracellular ratio of NADH to NAD+ on human erythrocyte metabolism: new estimation of the turnover through the phosphoglycerate shunt.
    Momsen G
    Arch Biochem Biophys; 1981 Aug; 210(1):160-6. PubMed ID: 7294824
    [No Abstract]   [Full Text] [Related]  

  • 15. PROLONGED ANOXIC SURVIVAL DUE TO ANOXIA PRE-EXPOSURE: BRAIN ATP, LACTATE, AND PYRUVATE.
    DAHL NA; BALFOUR WM
    Am J Physiol; 1964 Aug; 207():452-6. PubMed ID: 14205366
    [No Abstract]   [Full Text] [Related]  

  • 16. Dihydroxyacetone, pyruvate, and phosphate effects on 2,3 DPG and ATP in citrate-phosphate-dextrose-adenine blood preservation.
    Dawson RB; Fagan DS; Meyer DR
    Transfusion; 1984; 24(4):327-9. PubMed ID: 6464157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in the glycolytic pathway in patients with essential arterial hypertension].
    Pérez Cano R; Murillo del Castillo C; Moruno García R; Oliván Martínez J; Montoya García M; Galan Galán F; Garrido Peralta M
    An Med Interna; 1990 May; 7(5):233-6. PubMed ID: 2102717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [ATP-ADP- AND LACTATE-PYRUVATE RATIOS IN AEROBIC AND ANEROBIC GLYCOLYSIS IN RABBIT ERYTHROCYTES].
    GERCKEN G; VON WICHERT ; ISSELHARD W
    Biochem Z; 1964 Mar; 339():362-73. PubMed ID: 14236692
    [No Abstract]   [Full Text] [Related]  

  • 19. Glycolysis abnormalities in fibromyalgia.
    Eisinger J; Plantamura A; Ayavou T
    J Am Coll Nutr; 1994 Apr; 13(2):144-8. PubMed ID: 8006296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of Anaplasma marginale on the glycolytic pathway in bovine erythrocytes.
    Mandelblum F; Ysern-Caldentey M
    Comp Biochem Physiol B; 1984; 78(4):851-4. PubMed ID: 6236033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.