BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8082051)

  • 21. Early Alterations in Bone Characteristics of Type I Diabetic Rat Femur: A Fourier Transform Infrared (FT-IR) Imaging Study.
    Bozkurt O; Bilgin MD; Evis Z; Pleshko N; Severcan F
    Appl Spectrosc; 2016 Dec; 70(12):2005-2015. PubMed ID: 27680083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of carbonate determination in human teeth using Raman spectroscopy.
    Spizzirri PG; Cochrane NJ; Prawer S; Reynolds EC
    Caries Res; 2012; 46(4):353-60. PubMed ID: 22614169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.
    Zamudio-Ortega CM; Contreras-Bulnes R; Scougall-Vilchis RJ; Morales-Luckie RA; Olea-Mejía OF; Rodríguez-Vilchis LE
    Eur J Paediatr Dent; 2014 Sep; 15(3):275-80. PubMed ID: 25306144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-apatitic environments in bone mineral: FT-IR detection, biological properties and changes in several disease states.
    Rey C; Lian J; Grynpas M; Shapiro F; Zylberberg L; Glimcher MJ
    Connect Tissue Res; 1989; 21(1-4):267-73. PubMed ID: 2605951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aspects of carbonic anhydrase and carbonate content during mineralization of the rat enamel.
    Kakei M; Nakahara H
    Biochim Biophys Acta; 1996 Mar; 1289(2):226-30. PubMed ID: 8600978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measures of Bone Mineral Carbonate Content and Mineral Maturity/Crystallinity for FT-IR and Raman Spectroscopic Imaging Differentially Relate to Physical-Chemical Properties of Carbonate-Substituted Hydroxyapatite.
    Taylor EA; Mileti CJ; Ganesan S; Kim JH; Donnelly E
    Calcif Tissue Int; 2021 Jul; 109(1):77-91. PubMed ID: 33710382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone.
    Gu C; Katti DR; Katti KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():25-37. PubMed ID: 23257327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in the nature and composition of enamel mineral during porcine amelogenesis.
    Aoba T; Moreno EC
    Calcif Tissue Int; 1990 Dec; 47(6):356-64. PubMed ID: 1963381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphological and mineral analysis of dental enamel after erosive challenge in gastric juice and orange juice.
    Braga SR; De Faria DL; De Oliveira E; Sobral MA
    Microsc Res Tech; 2011 Dec; 74(12):1083-7. PubMed ID: 21538693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a new approach to diagnosis of the early fluorosis forms by means of FTIR and Raman microspectroscopy.
    Seredin P; Goloshchapov D; Ippolitov Y; Vongsvivut J
    Sci Rep; 2020 Dec; 10(1):20891. PubMed ID: 33262412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical and compositional changes on demineralized primary enamel induced by CO2 Laser.
    da Silva Tagliaferro EP; Rodrigues LK; Soares LE; Martin AA; Nobre-dos-Santos M
    Photomed Laser Surg; 2009 Aug; 27(4):585-90. PubMed ID: 19563241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in acid-phosphate content in enamel mineral during porcine amelogenesis.
    Shimoda S; Aoba T; Moreno EC
    J Dent Res; 1991 Dec; 70(12):1516-23. PubMed ID: 1774383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FT-IR spectral studies on certain human urinary stones in the patients of rural area.
    Selvaraju R; Thiruppathi G; Raja A
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():260-5. PubMed ID: 22484261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local study of fissure caries by Fourier transform infrared microscopy and X-ray diffraction using synchrotron radiation.
    Seredin P; Kashkarov V; Lukin A; Ippolitov Y; Julian R; Doyle S
    J Synchrotron Radiat; 2013 Sep; 20(Pt 5):705-10. PubMed ID: 23955033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Dec; 49(6):383-8. PubMed ID: 1818762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentin, and a geological apatite.
    Dahm S; Risnes S
    Calcif Tissue Int; 1999 Dec; 65(6):459-65. PubMed ID: 10594165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deviations of inorganic and organic carbon content in hypomineralised enamel.
    Taube F; Marczewski M; Norén JG
    J Dent; 2015 Feb; 43(2):269-78. PubMed ID: 25239769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmission FT-IR microspectroscopy of mineral phases in calcified tissues.
    Bohic S; Heymann D; Pouëzat JA; Gauthier O; Daculsi G
    C R Acad Sci III; 1998 Oct; 321(10):865-76. PubMed ID: 9835023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature stability of carbonate groups in tooth enamel.
    Scherbina OI; Brik AB
    Appl Radiat Isot; 2000 May; 52(5):1071-5. PubMed ID: 10836408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.