These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 8082575)
1. Biochemical individuality and its implications for drug and carcinogen metabolism: recent insights from acetyltransferase and cytochrome P4501A2 phenotyping and genotyping in humans. Kadlubar FF Drug Metab Rev; 1994; 26(1-2):37-46. PubMed ID: 8082575 [No Abstract] [Full Text] [Related]
2. Aromatic and heterocyclic amine metabolism and phenotyping in humans. Lang NP; Kadlubar FF Prog Clin Biol Res; 1991; 372():33-47. PubMed ID: 1956928 [TBL] [Abstract][Full Text] [Related]
3. Bioactivation of aromatic amines by recombinant human cytochrome P4501A2 expressed in Ames tester strain bacteria: a substitute for activation by mammalian tissue preparations. Josephy PD; DeBruin LS; Lord HL; Oak JN; Evans DH; Guo Z; Dong MS; Guengerich FP Cancer Res; 1995 Feb; 55(4):799-802. PubMed ID: 7850792 [TBL] [Abstract][Full Text] [Related]
4. Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Lang NP; Butler MA; Massengill J; Lawson M; Stotts RC; Hauer-Jensen M; Kadlubar FF Cancer Epidemiol Biomarkers Prev; 1994 Dec; 3(8):675-82. PubMed ID: 7881341 [TBL] [Abstract][Full Text] [Related]
5. Cytochrome P-450 and acetyltransferase expression as biomarkers of carcinogen-DNA adduct levels and human cancer susceptibility. Badawi AF; Stern SJ; Lang NP; Kadlubar FF Prog Clin Biol Res; 1996; 395():109-40. PubMed ID: 8895986 [TBL] [Abstract][Full Text] [Related]
6. Analysis of within-subject variation of caffeine metabolism when used to determine cytochrome P4501A2 and N-acetyltransferase-2 activities. McQuilkin SH; Nierenberg DW; Bresnick E Cancer Epidemiol Biomarkers Prev; 1995 Mar; 4(2):139-46. PubMed ID: 7742721 [TBL] [Abstract][Full Text] [Related]
7. Role of cytochrome P4501A2 in chemical carcinogenesis: implications for human variability in expression and enzyme activity. Eaton DL; Gallagher EP; Bammler TK; Kunze KL Pharmacogenetics; 1995 Oct; 5(5):259-74. PubMed ID: 8563766 [TBL] [Abstract][Full Text] [Related]
8. Metabolism of 2-amino-alpha-carboline. A food-borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2. Raza H; King RS; Squires RB; Guengerich FP; Miller DW; Freeman JP; Lang NP; Kadlubar FF Drug Metab Dispos; 1996 Apr; 24(4):395-400. PubMed ID: 8801053 [TBL] [Abstract][Full Text] [Related]
9. Carcinogenic aromatic amine metabolism and DNA adduct detection in humans. Kadlubar FF Princess Takamatsu Symp; 1990; 21():329-38. PubMed ID: 2134686 [TBL] [Abstract][Full Text] [Related]
10. Polymorphic drug metabolism: studies with recombinant Chinese hamster cells and analyses in human populations. Yokoi T; Sawada M; Kamataki T Pharmacogenetics; 1995; 5 Spec No():S65-9. PubMed ID: 7581492 [TBL] [Abstract][Full Text] [Related]
11. Human cytochrome P4501A2. Landi MT; Sinha R; Lang NP; Kadlubar FF IARC Sci Publ; 1999; (148):173-95. PubMed ID: 10493258 [TBL] [Abstract][Full Text] [Related]
12. [Genetic polymorphism of the hepatic metabolism of drugs]. Larrey D; Pessayre D; Benhamou JP Gastroenterol Clin Biol; 1985; 9(6-7):522-31. PubMed ID: 3926587 [No Abstract] [Full Text] [Related]
13. Polymorphisms for aromatic amine metabolism in humans: relevance for human carcinogenesis. Kadlubar FF; Butler MA; Kaderlik KR; Chou HC; Lang NP Environ Health Perspect; 1992 Nov; 98():69-74. PubMed ID: 1486865 [TBL] [Abstract][Full Text] [Related]
14. Acetylator status, drug metabolism and disease. Pande JN; Pande A; Singh SP Natl Med J India; 2003; 16(1):24-6. PubMed ID: 12715953 [TBL] [Abstract][Full Text] [Related]
15. Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene. Nakajima M; Yokoi T; Mizutani M; Shin S; Kadlubar FF; Kamataki T Cancer Epidemiol Biomarkers Prev; 1994; 3(5):413-21. PubMed ID: 7920209 [TBL] [Abstract][Full Text] [Related]
16. Cytochrome P4501A2: enzyme induction and genetic control in determining 4-aminobiphenyl-hemoglobin adduct levels. Landi MT; Zocchetti C; Bernucci I; Kadlubar FF; Tannenbaum S; Skipper P; Bartsch H; Malaveille C; Shields P; Caporaso NE; Vineis P Cancer Epidemiol Biomarkers Prev; 1996 Sep; 5(9):693-8. PubMed ID: 8877060 [TBL] [Abstract][Full Text] [Related]
17. Metabolic activation of N-hydroxy-2-aminofluorene and N-hydroxy-2-acetylaminofluorene by monomorphic N-acetyltransferase (NAT1) and polymorphic N-acetyltransferase (NAT2) in colon cytosols of Syrian hamsters congenic at the NAT2 locus. Hein DW; Doll MA; Gray K; Rustan TD; Ferguson RJ Cancer Res; 1993 Feb; 53(3):509-14. PubMed ID: 8425184 [TBL] [Abstract][Full Text] [Related]
18. Genotyping and phenotyping cytochrome P450: perspectives for cancer treatment. Mathijssen RH; van Schaik RH Eur J Cancer; 2006 Jan; 42(2):141-8. PubMed ID: 16325399 [TBL] [Abstract][Full Text] [Related]
19. Bench to bedside: Pharmacogenomics, adverse drug interactions, and the cytochrome P450 system. Sikka R; Magauran B; Ulrich A; Shannon M Acad Emerg Med; 2005 Dec; 12(12):1227-35. PubMed ID: 16282513 [TBL] [Abstract][Full Text] [Related]
20. Determination of carcinogenic arylamine N-oxidation phenotype in humans by analysis of caffeine urinary metabolites. Kadlubar FF; Talaska G; Butler MA; Teitel CH; Massengill JP; Lang NP Prog Clin Biol Res; 1990; 340B():107-14. PubMed ID: 2392442 [No Abstract] [Full Text] [Related] [Next] [New Search]