BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 8082653)

  • 1. Role of the microtubule cytoskeleton in gravisensing Chara rhizoids.
    Braun M; Sievers A
    Eur J Cell Biol; 1994 Apr; 63(2):289-98. PubMed ID: 8082653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism.
    Braun M; Wasteneys GO
    Planta; 1998 May; 205(1):39-50. PubMed ID: 9599803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of microtubules in rhizoid differentiation of Spirogyra species.
    Yoshida K; Inoue N; Sonobe S; Shimmen T
    Protoplasma; 2003 Jun; 221(3-4):227-35. PubMed ID: 12802630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The polar organization of the growing Chara rhizoid and the transport of statoliths are actin-dependent.
    Sievers A; Kramer-Fischer M; Braun M; Buchen B
    Bot Acta; 1991 Apr; 104(2):103-9. PubMed ID: 11541283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure and cytoskeleton of Chara rhizoids in microgravity.
    Braun M; Buchen B; Sievers A
    Adv Space Res; 1999; 24(6):707-11. PubMed ID: 11542612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravity-sensing and polar growth in characean rhizoids.
    Braun M; Hauslage J; Czogalla A; Limbach C
    Planta; 2004 Jul; 219(3):379-88. PubMed ID: 15060825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pattern of acropetal and basipetal cytoplasmic streaming velocities in Chara rhizoids and protonemata, and gravity effect on the pattern as measured by laser-Doppler-velocimetry.
    Ackers D; Buchen B; Hejnowicz Z; Sievers A
    Planta; 2000 Jun; 211(1):133-43. PubMed ID: 10923714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips.
    Justus CD; Anderhag P; Goins JL; Lazzaro MD
    Planta; 2004 May; 219(1):103-9. PubMed ID: 14740215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular magnetophoresis of statoliths in Chara rhizoids and analysis of cytoplasm viscoelasticity.
    Kuznetsov OA; Hasenstein KH
    Adv Space Res; 2001; 27(5):887-92. PubMed ID: 11594372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats.
    Cai WM; Braun M; Sievers A
    Shi Yan Sheng Wu Xue Bao; 1997 Jun; 30(2):147-55. PubMed ID: 11536934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gravisensing in single-celled systems: characean rhizoids and protonemata.
    Braun M
    Adv Space Res; 2001; 27(5):1031-9. PubMed ID: 11596634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular differentiation in moss protonemata: a morphological and experimental study.
    Pressel S; Ligrone R; Duckett JG
    Ann Bot; 2008 Aug; 102(2):227-45. PubMed ID: 18508779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centrifugation causes adaptation of microfilaments: studies on the transport of statoliths in gravity sensing Chara rhizoids.
    Braun M; Sievers A
    Protoplasma; 1993; 174(1-2):50-61. PubMed ID: 11541080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gravity perception requires statoliths settled on specific plasma membrane areas in characean rhizoids and protonemata.
    Braun M
    Protoplasma; 2002 May; 219(3-4):150-9. PubMed ID: 12099215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relocalization of the calcium gradient and a dihydropyridine receptor is involved in upward bending by bulging of Chara protonemata, but not in downward bending by bowing of Chara rhizoids.
    Braun M; Richter P
    Planta; 1999 Oct; 209(4):414-23. PubMed ID: 10550622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubules regulate the generation of polarity in zoospores of Phytophthora cinnamomi.
    Hyde GJ; Hardham AR
    Eur J Cell Biol; 1993 Oct; 62(1):75-85. PubMed ID: 8269981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol.
    Baskin TI; Wilson JE; Cork A; Williamson RE
    Plant Cell Physiol; 1994 Sep; 35(6):935-42. PubMed ID: 7981964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius.
    Hyde GJ; Davies D; Perasso L; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 1999; 42(2):114-24. PubMed ID: 10215421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule distribution in gravitropic protonemata of the moss Ceratodon.
    Schwuchow J; Sack FD; Hartmann E
    Protoplasma; 1990; 159():60-9. PubMed ID: 11537091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule-dependent movement of symbiotic algae and granules in Paramecium bursaria.
    Nishihara N; Horiike S; Oka Y; Takahashi T; Kosaka T; Hosoya H
    Cell Motil Cytoskeleton; 1999; 43(2):85-98. PubMed ID: 10379834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.