These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 808278)

  • 21. [Ultrastructural aspects of the migration of somite cells to the posterior limb buds of mice].
    Houben JJ
    Arch Biol (Liege); 1976; 87(3):345-65. PubMed ID: 1020951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The amphibian chorda-mesoderm. A semantic puzzle.
    Løvtrup S
    Riv Biol; 1985; 78(3):409-14. PubMed ID: 4089462
    [No Abstract]   [Full Text] [Related]  

  • 23. Neural-mesodermal interactions subsequent to neural induction in Ambystoma.
    Landesman R
    Dev Biol; 1967 Oct; 16(4):341-67. PubMed ID: 5621692
    [No Abstract]   [Full Text] [Related]  

  • 24. Early limb development of Xenopus laevis.
    Tarin D; Sturdee AP
    J Embryol Exp Morphol; 1971 Oct; 26(2):169-79. PubMed ID: 5157347
    [No Abstract]   [Full Text] [Related]  

  • 25. [Morphological studies of blood cell differentiation in the axolotl, Ambystoma mexicanum Shaw].
    Charlemagne J
    Z Zellforsch Mikrosk Anat; 1972; 123(2):224-39. PubMed ID: 5007500
    [No Abstract]   [Full Text] [Related]  

  • 26. Regeneration in sparsely innervated and aneurogenic forelimbs of Amblystoma larvae.
    YNTEMA CL
    J Exp Zool; 1959 Feb; 140():101-23. PubMed ID: 13846546
    [No Abstract]   [Full Text] [Related]  

  • 27. Effect of temperature differentials upon reconstitution of embryonic primordia in Ambystoma.
    Piatt J
    J Embryol Exp Morphol; 1971 Jun; 25(3):339-45. PubMed ID: 5556979
    [No Abstract]   [Full Text] [Related]  

  • 28. A gradient of homeodomain protein in developing forelimbs of Xenopus and mouse embryos.
    Oliver G; Wright CV; Hardwicke J; De Robertis EM
    Cell; 1988 Dec; 55(6):1017-24. PubMed ID: 2904837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A TEST OF THE CAPACITY OF PRESUMPTIVE SOMATIC CELLS TO TRANSFORM INTO PRIMORDIAL GERM CELLS IN THE MEXICAN AXOLOTL.
    SMITH LD
    J Exp Zool; 1964 Jul; 156():229-42. PubMed ID: 14193848
    [No Abstract]   [Full Text] [Related]  

  • 30. [Contribution of somite cells to the development of posterior limb buds in mice].
    Milaire J
    Arch Biol (Liege); 1976; 87(3):315-43. PubMed ID: 1020950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TISSUE AFINITIES OF DEVELOPING MELANOPHORES IN THE MEXICAN AXOLOTL, SIREDON MEXICANUM, SHAW.
    BRICK I; DALTON HC
    J Exp Zool; 1963 Nov; 154():197-206. PubMed ID: 14085417
    [No Abstract]   [Full Text] [Related]  

  • 32. Cellular contribution to supernumerary limbs resulting from the interaction between developing and regenerating tissues in the axolotl.
    Muneoka K; Bryant SV
    Dev Biol; 1984 Sep; 105(1):179-87. PubMed ID: 6468758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians.
    Youn BW; Keller RE; Malacinski GM
    J Embryol Exp Morphol; 1980 Oct; 59():223-47. PubMed ID: 6971322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Autoradiographic study of the anterior limb-bud development in two species of chelonians (Testudo graeca L. and Emys orbicularis L)].
    Vasse J
    J Embryol Exp Morphol; 1973 Jun; 29(3):585-600. PubMed ID: 4717984
    [No Abstract]   [Full Text] [Related]  

  • 35. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function.
    Chiang C; Litingtung Y; Harris MP; Simandl BK; Li Y; Beachy PA; Fallon JF
    Dev Biol; 2001 Aug; 236(2):421-35. PubMed ID: 11476582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of anteroposterior pattern in the axolotl forelimb by a smoothly graded signal.
    Slack JM
    J Embryol Exp Morphol; 1977 Jun; 39():169-82. PubMed ID: 886255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on insulin-like growth factor-I and insulin in chick limb morphogenesis.
    Dealy CN; Kosher RA
    Dev Dyn; 1995 Jan; 202(1):67-79. PubMed ID: 7703522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence that patterning mechanisms in developing and regenerating limbs are the same.
    Muneoka K; Bryant SV
    Nature; 1982 Jul; 298(5872):369-71. PubMed ID: 7088182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Demonstration, by means of electron microscopy, of the penetration of somitic cells into the mesoblast of the limb buds of reptile embryos (Anguis fragilis, Lacerta viridis)].
    Raynaud A; Adrian M
    Arch Anat Microsc Morphol Exp; 1975; 64(4):287-316. PubMed ID: 184737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fine structure of blastema cells and differentiating cartilage cells in regenerating limbs of Amblystoma larvae.
    HAY ED
    J Biophys Biochem Cytol; 1958 Sep; 4(5):583-91. PubMed ID: 13587554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.