BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 8083169)

  • 1. Characterization of the pcaR regulatory gene from Pseudomonas putida, which is required for the complete degradation of p-hydroxybenzoate.
    Romero-Steiner S; Parales RE; Harwood CS; Houghton JE
    J Bacteriol; 1994 Sep; 176(18):5771-9. PubMed ID: 8083169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PcaR-mediated activation and repression of pca genes from Pseudomonas putida are propagated by its binding to both the -35 and the -10 promoter elements.
    Guo Z; Houghton JE
    Mol Microbiol; 1999 Apr; 32(2):253-63. PubMed ID: 10231483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the pcaIJ genes for aromatic acid degradation in Pseudomonas putida.
    Parales RE; Harwood CS
    J Bacteriol; 1993 Sep; 175(18):5829-38. PubMed ID: 8376330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway.
    Nichols NN; Harwood CS
    J Bacteriol; 1995 Dec; 177(24):7033-40. PubMed ID: 8522507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter.
    Gerischer U; Segura A; Ornston LN
    J Bacteriol; 1998 Mar; 180(6):1512-24. PubMed ID: 9515921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant-growth-promoting Pseudomonas putida WCS358.
    Bertani I; Kojic M; Venturi V
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1611-1620. PubMed ID: 11390692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate.
    Harwood CS; Nichols NN; Kim MK; Ditty JL; Parales RE
    J Bacteriol; 1994 Nov; 176(21):6479-88. PubMed ID: 7961399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics of the protocatechuate branch of the β-ketoadipate pathway in the Roseobacter lineage.
    Alejandro-Marín CM; Bosch R; Nogales B
    Mar Genomics; 2014 Oct; 17():25-33. PubMed ID: 24906178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY.
    Luu RA; Kootstra JD; Nesteryuk V; Brunton CN; Parales JV; Ditty JL; Parales RE
    Mol Microbiol; 2015 Apr; 96(1):134-47. PubMed ID: 25582673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida.
    Cowles CE; Nichols NN; Harwood CS
    J Bacteriol; 2000 Nov; 182(22):6339-46. PubMed ID: 11053377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein.
    Venturi V; Ottevanger C; Bracke M; Weisbeek P
    Mol Microbiol; 1995 Mar; 15(6):1081-93. PubMed ID: 7623664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the transcriptional activator pobR and characterization of its role in the expression of pobA, the structural gene for p-hydroxybenzoate hydroxylase in Acinetobacter calcoaceticus.
    DiMarco AA; Averhoff B; Ornston LN
    J Bacteriol; 1993 Jul; 175(14):4499-506. PubMed ID: 8331077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida.
    Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H
    Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and expression of pca genes from Pseudomonas putida in Escherichia coli.
    Hughes EJ; Shapiro MK; Houghton JE; Ornston LN
    J Gen Microbiol; 1988 Nov; 134(11):2877-87. PubMed ID: 3076176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens.
    Parke D
    J Bacteriol; 1996 Jan; 178(1):266-72. PubMed ID: 8550427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida.
    Coco WM; Rothmel RK; Henikoff S; Chakrabarty AM
    J Bacteriol; 1993 Jan; 175(2):417-27. PubMed ID: 8419291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supraoperonic clustering of pca genes for catabolism of the phenolic compound protocatechuate in Agrobacterium tumefaciens.
    Parke D
    J Bacteriol; 1995 Jul; 177(13):3808-17. PubMed ID: 7601847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and regulation of a dnaA homologue isolated from Pseudomonas putida.
    Ingmer H; Atlung T
    Mol Gen Genet; 1992 Apr; 232(3):431-9. PubMed ID: 1588913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti.
    MacLean AM; MacPherson G; Aneja P; Finan TM
    Appl Environ Microbiol; 2006 Aug; 72(8):5403-13. PubMed ID: 16885292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of MobR, the 3-hydroxybenzoate-responsive transcriptional regulator for the 3-hydroxybenzoate hydroxylase gene of Comamonas testosteroni KH122-3s.
    Hiromoto T; Matsue H; Yoshida M; Tanaka T; Higashibata H; Hosokawa K; Yamaguchi H; Fujiwara S
    J Mol Biol; 2006 Dec; 364(5):863-77. PubMed ID: 17046018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.