BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 8085221)

  • 21. The sensitivity and specificity of a colorimetric microbiological caries activity test (Cariostat) in preschool children.
    Koroluk L; Hoover JN; Komiyama K
    Pediatr Dent; 1994; 16(4):276-81. PubMed ID: 7937260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salivary mutans streptococci counts as indicators in caries risk assessment in 6-7-year-old Chinese children.
    Zhang Q; Bian Z; Fan M; van Palenstein Helderman WH
    J Dent; 2007 Feb; 35(2):177-80. PubMed ID: 16949192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Association between mother-infant salivary contacts and caries resistance in children: a cohort study.
    Aaltonen AS; Tenovuo J
    Pediatr Dent; 1994; 16(2):110-6. PubMed ID: 8015951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A randomised controlled trial of the effectiveness of providing free fluoride toothpaste from the age of 12 months on reducing caries in 5-6 year old children.
    Davies GM; Worthington HV; Ellwood RP; Bentley EM; Blinkhorn AS; Taylor GO; Davies RM
    Community Dent Health; 2002 Sep; 19(3):131-6. PubMed ID: 12269458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Caries prediction by multiple salivary mutans streptococcal counts in caries-free children with different levels of fluoride exposure, oral hygiene and sucrose intake.
    Petti S; Hausen HW
    Caries Res; 2000; 34(5):380-7. PubMed ID: 11014904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of mixed mutans streptococci colonization on caries development.
    Seki M; Yamashita Y; Shibata Y; Torigoe H; Tsuda H; Maeno M
    Oral Microbiol Immunol; 2006 Feb; 21(1):47-52. PubMed ID: 16390341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caries risk assessment by a cross-sectional discrimination model.
    Leverett DH; Featherstone JD; Proskin HM; Adair SM; Eisenberg AD; Mundorff-Shrestha SA; Shields CP; Shaffer CL; Billings RJ
    J Dent Res; 1993 Feb; 72(2):529-37. PubMed ID: 8423251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of caries activity in children with today's low caries incidence.
    Klock B; Emilson CG; Lind SO; Gustavsdotter M; Olhede-Westerlund AM
    Community Dent Oral Epidemiol; 1989 Dec; 17(6):285-8. PubMed ID: 2686926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salivary counts of mutans streptococci and lactobacilli and past caries experience in caries prediction.
    Alaluusua S
    Caries Res; 1993; 27 Suppl 1():68-71. PubMed ID: 8500129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Associations between dietary intake, dental caries experience and salivary bacterial levels in 12-year-old English schoolchildren.
    Beighton D; Adamson A; Rugg-Gunn A
    Arch Oral Biol; 1996 Mar; 41(3):271-80. PubMed ID: 8735013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caries risk profiles of 12-13-year-old children in Laos and Sweden.
    Tayanin GL; Petersson GH; Bratthall D
    Oral Health Prev Dent; 2005; 3(1):15-23. PubMed ID: 15921333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A biopsychosocial model to predict caries in preschool children.
    Reisine S; Litt M; Tinanoff N
    Pediatr Dent; 1994; 16(6):413-8. PubMed ID: 7854947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Results with the caries activity test "Cariostat" compared to prevalence of mutans streptococci and lactobacilli.
    Camling E; Emilson CG
    Swed Dent J; 1989; 13(4):125-30. PubMed ID: 2799658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Evaluation of oral health status of a preschool group with a predictive test based on mutans group and clinical studies].
    Angulo M; Pivel L; Cabanas B; Jorysz E
    An Fac Odontol; 1990 Dec; (26):33-41. PubMed ID: 2134730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Streptococcus mutans: its relation to cariogenic activity].
    Rodríguez Miro MJ; Vega Valdés D; Fonte Martínez M; Rojas Martínez G; Elías Avila L; Gispert Abreu E; Rodríguez Lucas A; Gallego Rodríguez J; Cantillo Estrada E; Rodríguez Lucas A
    Rev Cubana Estomatol; 1989; 26(3):191-206. PubMed ID: 2640058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Caries risk assessment in a longitudinal discrimination study.
    Leverett DH; Proskin HM; Featherstone JD; Adair SM; Eisenberg AD; Mundorff-Shrestha SA; Shields CP; Shaffer CL; Billings RJ
    J Dent Res; 1993 Feb; 72(2):538-43. PubMed ID: 8380821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Assessment of caries risk in a population of age 6-20, from Bacau, Romania].
    Costache I; Dănilă I
    Rev Med Chir Soc Med Nat Iasi; 2010; 114(1):239-43. PubMed ID: 20509309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screening for high caries increment in children.
    Pienihäkkinen K
    Proc Finn Dent Soc; 1988; 84 Suppl 1-2():1-76. PubMed ID: 3387426
    [No Abstract]   [Full Text] [Related]  

  • 39. Risk assessment of dental caries by using Classification and Regression Trees.
    Ito A; Hayashi M; Hamasaki T; Ebisu S
    J Dent; 2011 Jun; 39(6):457-63. PubMed ID: 21514355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a computer program for caries risk assessment in schoolchildren.
    Hänsel Petersson G; Twetman S; Bratthall D
    Caries Res; 2002; 36(5):327-40. PubMed ID: 12399693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.