These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8085292)

  • 21. Cylindrical PVDF film transmitters and receivers for air ultrasound.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):626-34. PubMed ID: 12046938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of coupling horns for waveguides used in medical ultrasonics.
    Nicholson NC; McDicken WN
    Ultrasonics; 1996 Oct; 34(7):747-55. PubMed ID: 8930068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multiple-frequency hydrophone calibration technique.
    Smith RA; Bacon DR
    J Acoust Soc Am; 1990 May; 87(5):2231-43. PubMed ID: 2189922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A wideband PVDF-on-silicon ultrasonic transducer array with microspheres embedded low melting temperature alloy backing.
    Kim HJ; Lee H; Ziaie B
    Biomed Microdevices; 2007 Feb; 9(1):83-90. PubMed ID: 17106637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primary reciprocity-based method for calibration of hydrophone magnitude and phase sensitivity: complete tests at frequencies from 1 to 7 MHz.
    Oliveira EG; Costa-Felix RP; Machado JC
    Ultrasonics; 2015 Apr; 58():87-95. PubMed ID: 25578371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a novel solid-state method for determining the acoustic power generated by physiotherapy ultrasound transducers.
    Zeqiri B; Barrie J
    Ultrasound Med Biol; 2008 Sep; 34(9):1513-27. PubMed ID: 18440695
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 25 MHz ultrasonic transducers with lead-free piezoceramic, 1-3 PZT fiber-epoxy composite, and PVDF polymer active elements.
    Jadidian B; Hagh NM; Winder AA; Safari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):368-78. PubMed ID: 19251524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comparison of Different Calibration Techniques for Hydrophones Used in Medical Ultrasonic Field Measurement.
    Weber M; Wilkens V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1919-1929. PubMed ID: 33360988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time delay spectrometry for hydrophone calibrations below 1 MHz.
    Gammell PM; Harris GR
    J Acoust Soc Am; 1999 Nov; 106(5):L41-6. PubMed ID: 10573913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1262-70. PubMed ID: 15553510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a PVDF membrane hydrophone for use in air-coupled ultrasonic transducer calibration.
    Galbraith W; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1549-58. PubMed ID: 18250002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
    Cooling MP; Humphrey VF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):84-93. PubMed ID: 18334316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cost-effective shock wave hydrophones.
    Schafer ME
    J Stone Dis; 1993 Apr; 5(2):73-6. PubMed ID: 10148592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the repeatability and reproducibility of hydrophone measurements of medical ultrasound fields.
    Martin E; Treeby B
    J Acoust Soc Am; 2019 Mar; 145(3):1270. PubMed ID: 31067926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of a fibre-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers.
    Chan HL; Chiang KS; Price DC; Gardner JL; Brinch J
    Phys Med Biol; 1989 Nov; 34(11):1609-22. PubMed ID: 2587628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of in situ exposure to ultrasound: an acoustical attenuation method.
    Preston RC; Shaw A; Zeqiri B
    Ultrasound Med Biol; 1991; 17(4):317-32. PubMed ID: 1949344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detailed investigations of polymer/metal multilayer matching layer and backing absorber structures for wideband ultrasonic transducers.
    Toda M; Thompson M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Feb; 59(2):231-42. PubMed ID: 24626031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scanning head with 128-element 20-MHz PVDF linear array transducer.
    Carey SJ; Brox-Nilsen C; Lewis HM; Gregory CM; Hatfield JV
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1769-77. PubMed ID: 19686993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of spatial polarization distribution on spot poled PVDF membrane hydrophone performance.
    Fay B; Lewin PA; Ludwig G; Sessler GM; Yang G
    Ultrasound Med Biol; 1992; 18(6-7):625-35. PubMed ID: 1413274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.
    Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M
    Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.