These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 808549)

  • 21. Reversal of cerulenin-induced inhibition of phospholipids and sterol synthesis by exogenous fatty acids/sterols in Epidermophyton floccosum.
    Sanadi S; Pandey R; Khuller GK
    Biochim Biophys Acta; 1987 Sep; 921(2):341-6. PubMed ID: 3651491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat.
    Arneborg N; Høy CE; Jørgensen OB
    Yeast; 1995 Aug; 11(10):953-9. PubMed ID: 8533470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyterpenoids as cholesterol and tetrahymanol surrogates in the ciliate Tetrahymena pyriformis.
    Raederstorff D; Rohmer M
    Biochim Biophys Acta; 1988 May; 960(2):190-9. PubMed ID: 3130105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of sterol side chains on growth and membrane fatty acid composition of Saccharomyces cerevisiae.
    Buttke TM; Jones SD; Bloch K
    J Bacteriol; 1980 Oct; 144(1):124-30. PubMed ID: 6774959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of conjugation in Tetrahymena pyriformis by cerulenin. Possible requirement for de novo lipid synthesis.
    Frisch A; Loyter A; Levy R; Goldberg I
    Biochim Biophys Acta; 1978 Jan; 506(1):18-29. PubMed ID: 413577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ergosterol replacement of tetrahymanol in Tetrahymena membranes.
    Conner RL; Mallory FB; Landrey JR; Ferguson KA; Kaneshiro ES; Ray E
    Biochem Biophys Res Commun; 1971 Aug; 44(4):995-1000. PubMed ID: 4108155
    [No Abstract]   [Full Text] [Related]  

  • 27. Membranes of Tetrahymena. IV. Isolation and characterization of temperature-responsive smooth and rough microsomal subfractions.
    Ronai A; Wunderlich F
    J Membr Biol; 1975 Dec; 24(3-4):381-99. PubMed ID: 175162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermally induced heterogeneity in microsomal membranes of fatty acid-supplemented Tetrahymena: lipid composition, fluidity and enzyme activity.
    Kameyama Y; Ohki K; Nozawa Y
    J Biochem; 1980 Nov; 88(5):1291-303. PubMed ID: 6780538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipid profiles of Aspergillus niger and its unsaturated fatty acid auxotroph, UFA2.
    Chattopadhyay P; Banerjee SK; Sen K; Chakrabarti P
    Can J Microbiol; 1985 Apr; 31(4):352-5. PubMed ID: 4005716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature-induced changes in fatty acid unsaturation of Tetrahymena membranes do not require induced fatty acid desaturase synthesis.
    Skriver L; Thompson GA
    Biochim Biophys Acta; 1979 Feb; 572(2):376-81. PubMed ID: 106894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid modification during cytodifferentiation of Tetrahymena vorax. Whole cell phospholipids and triacylglycerols of microstomal and macrostomal phenotypes.
    Ryals PE; Buhse HE; Modzejewski J
    Biochim Biophys Acta; 1989 Jun; 991(3):438-44. PubMed ID: 2730920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of methyl mercuric chloride on growth inhibition and the cell membrane of Tetrahymena].
    Fukuda M
    Nihon Eiseigaku Zasshi; 1994 Aug; 49(3):660-4. PubMed ID: 7933652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of lipid biosynthesis by p-chlorophenoxy-isobutyrate (CPIB) in Tetrahymena pyriformis.
    Nozawa Y
    J Biochem; 1973 Dec; 74(6):1157-63. PubMed ID: 4205457
    [No Abstract]   [Full Text] [Related]  

  • 34. Mechanism for adaptive modification during cold acclimation of phospholipid acyl chain composition in Tetrahymena. I. Principal involvement of deacylation-reacylation.
    Kameyama Y; Yoshioka S; Nozawa Y
    Biochim Biophys Acta; 1984 Mar; 793(1):28-33. PubMed ID: 6704411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on thermal adaptation in Tetrahymena membrane lipids. Modification of positional distribution of phospholipid acyl chains in plasma membranes, mitochondria and microsomes.
    Maruyama H; Banno Y; Watanabe T; Nozawa Y
    Biochim Biophys Acta; 1982 May; 711(2):229-44. PubMed ID: 6807352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The polar lipids of group B Streptococci. II. Composition and positional distribution of fatty acids.
    Fischer W
    Biochim Biophys Acta; 1977 Apr; 487(1):89-104. PubMed ID: 870060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fatty acids of mitochondrial membranes from Tetrahymena pyriformis.
    Gleason FK
    J Lipid Res; 1976 Jan; 17(1):16-20. PubMed ID: 815502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discontinuous thermotropic response of Tetrahymena membrane lipids correlated with specific lipid compositional changes.
    Dickens BF; Martin CE; King GP; Turner JS; Thompson GA
    Biochim Biophys Acta; 1980 May; 598(2):217-36. PubMed ID: 6769483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of growth temperature on the methyl sterol and phospholipid fatty acid composition of Methylococcus capsulatus (Bath).
    Jahnke LL
    FEMS Microbiol Lett; 1992 Jun; 72(3):209-12. PubMed ID: 11537858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive modification of membrane lipids in Tetrahymena pyriformis during starvation. Alterations in phospholipid composition and positional distribution of fatty acyl chains.
    Kasai R; Watanabe T; Fukushima H; Iida H; Nozawa Y
    Biochim Biophys Acta; 1981 Oct; 666(1):36-46. PubMed ID: 6794634
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.