These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 8086432)

  • 1. Structure and dynamics of tosylchymotrypsin at pH 7 examined by tritium NMR spectroscopy.
    O'Connell TM; Gerig JT; Williams PG
    Biochim Biophys Acta; 1994 Sep; 1208(1):171-8. PubMed ID: 8086432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion at the active site of [(4-fluorophenyl)sulfonyl]chymotrypsin.
    Ando ME; Gerig JT; Luk KF
    Biochemistry; 1986 Aug; 25(17):4772-8. PubMed ID: 3768312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR studies of the alpha-chymotrypsin-(R)-1-acetamido-2-(4-fluorophenyl)ethane-1-boronic acid complex at pH 7.
    Sylvia LA; Gerig JT
    Biochim Biophys Acta; 1995 Oct; 1252(2):225-32. PubMed ID: 7578227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of alpha-chymotrypsin-N-trifluoroacetyl-4-fluorophenylalanine complexes.
    Jacobson AR; Gerig JT
    J Biomol NMR; 1991 Jul; 1(2):131-44. PubMed ID: 1841692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13C CPMAS spectroscopy of deuterated proteins: CP dynamics, line shapes, and T1 relaxation.
    Morcombe CR; Gaponenko V; Byrd RA; Zilm KW
    J Am Chem Soc; 2005 Jan; 127(1):397-404. PubMed ID: 15631490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR studies of the alpha-chymotrypsin-(R)-1-acetamido-2-(4- fluorophenyl)ethane-1-boronic acid complex.
    Sylvia LA; Gerig JT
    Biochim Biophys Acta; 1993 Jun; 1163(3):321-34. PubMed ID: 8507671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis of highly tritium-labeled alanine using 3H- and 1H-NMR].
    Rozenberg SG; Zaloznykh VM; Zolotarev IuA; Zaĭtsev DA; Miasoedov NF
    Bioorg Khim; 1990 Jun; 16(6):858-61. PubMed ID: 2222530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 1H and 19F nuclear magnetic resonance spectroscopy.
    Heintz D; Kany H; Kalbitzer HR
    Biochemistry; 1996 Oct; 35(39):12686-93. PubMed ID: 8841112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C NMR study of how the oxyanion pKa values of subtilisin and chymotrypsin tetrahedral adducts are affected by different amino acid residues binding in enzyme subsites S1-S4.
    O'Sullivan DB; O'Connell TP; Mahon MM; Koenig A; Milne JJ; Fitzpatrick TB; Malthouse JP
    Biochemistry; 1999 May; 38(19):6187-94. PubMed ID: 10320347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deuterium isotope effect on the NMR signal of the low-barrier hydrogen bond in a transition-state analog complex of chymotrypsin.
    Cassidy CS; Lin J; Frey PA
    Biochem Biophys Res Commun; 2000 Jul; 273(2):789-92. PubMed ID: 10873682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-tritium exchange and nuclear magnetic resonance titrations of the histidine residues in ribonuclease St and analysis of their microenvironment.
    Miyamoto K; Arata Y; Matsuo H; Narita K
    J Biochem; 1981 Jan; 89(1):49-59. PubMed ID: 6260763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations of intramolecular hydrogen bonding in three types of Schiff bases by 2H and 3H NMR isotope effects.
    Schilf W; Bloxsidge JP; Jones JR; Lu SY
    Magn Reson Chem; 2004 Jun; 42(6):556-60. PubMed ID: 15137048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and Characterization of Hydrogen-Deuterium Exchange Chemistry Using Relaxation Dispersion NMR Spectroscopy.
    Khirich G; Holliday MJ; Lin JC; Nandy A
    J Phys Chem B; 2018 Mar; 122(8):2368-2378. PubMed ID: 29376350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of a trypsin-like mutant chymotrypsin: the role of position 226 in the activity and specificity of S189D chymotrypsin.
    Jelinek B; Katona G; Fodor K; Venekei I; Gráf L
    Protein J; 2008 Feb; 27(2):79-87. PubMed ID: 17805946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tritium nuclear magnetic resonance spectroscopy. Part VI (1). Tritiated steroid hormones.
    Al-Rawi JM; Bloxsidge JP; Elvidge JA; Jones JR
    Steroids; 1976 Sep; 28(3):359-75. PubMed ID: 982494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tritium nuclear magnetic resonance spectroscopy. Distribution patterns and nuclear Overhauser enhancements in some tritiated steroids.
    Altman LJ; Silberman N
    Steroids; 1977 Apr; 29(4):557-65. PubMed ID: 867452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of specificity on ligand conformation in acyl-chymotrypsins.
    Johal SS; White AJ; Wharton CW
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):281-7. PubMed ID: 8297332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational dynamics in fluorophenylcarbamoyl-alpha-chymotrypsins.
    Kairi M; Gerig JT
    Biochim Biophys Acta; 1990 Jun; 1039(2):157-70. PubMed ID: 2364092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure determination and analysis of a bacterial chymotrypsin from Cellulomonas bogoriensis.
    Shaw A; Saldajeno ML; Kolkman MA; Jones BE; Bott R
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Apr; 63(Pt 4):266-9. PubMed ID: 17401191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the mechanism of water transfer across frog skin by a comparison of the permeability of the skin to deuterated and tritiated water.
    King V
    J Physiol; 1969 Feb; 200(2):529-38. PubMed ID: 5764409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.