These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 8086482)
21. Methylation map of Xenopus laevis ribosomal RNA. Maden BE Nature; 1980 Nov; 288(5788):293-6. PubMed ID: 7432528 [TBL] [Abstract][Full Text] [Related]
22. RNA secondary structure analysis of the packaging signal for Moloney murine leukemia virus. Alford RL; Honda S; Lawrence CB; Belmont JW Virology; 1991 Aug; 183(2):611-9. PubMed ID: 1853563 [TBL] [Abstract][Full Text] [Related]
23. Nucleotide sequence and presumed secondary structure of the 28S rRNA of pea aphid: implication for diversification of insect rRNA. Amako D; Kwon OY; Ishikawa H J Mol Evol; 1996 Nov; 43(5):469-75. PubMed ID: 8875861 [TBL] [Abstract][Full Text] [Related]
24. Mapping RNA structure in vitro using nucleobase-specific probes. Sachsenmaier N; Handl S; Debeljak F; Waldsich C Methods Mol Biol; 2014; 1086():79-94. PubMed ID: 24136599 [TBL] [Abstract][Full Text] [Related]
25. In vivo structural analysis of spliced leader RNAs in Trypanosoma brucei and Leptomonas collosoma: a flexible structure that is independent of cap4 methylations. Harris KA; Crothers DM; Ullu E RNA; 1995 Jun; 1(4):351-62. PubMed ID: 7493314 [TBL] [Abstract][Full Text] [Related]
26. RNA Remodeling by RNA Chaperones Monitored by RNA Structure Probing. Friedrich S; Schmidt T; Behrens SE Methods Mol Biol; 2020; 2106():179-192. PubMed ID: 31889258 [TBL] [Abstract][Full Text] [Related]
27. Splicing control of the L1 ribosomal protein gene of X.laevis: structural similarities between sequences present in the regulatory intron and in the 28S ribosomal RNA. Fragapane P; Caffarelli E; Santoro B; Sperandio S; Lener M; Bozzoni I Mol Biol Rep; 1990; 14(2-3):111-2. PubMed ID: 2362566 [No Abstract] [Full Text] [Related]
28. Melting and chemical modification of a cyclized self-splicing group I intron: similarity of structures in 1 M Na+, in 10 mM Mg2+, and in the presence of substrate. Jaeger JA; Zuker M; Turner DH Biochemistry; 1990 Nov; 29(44):10147-58. PubMed ID: 2271644 [TBL] [Abstract][Full Text] [Related]
29. 28S ribosomal RNA in Xenopus borealis: gene sequence and differences from Xenopus laevis sequence. Ajuh PM; Maden H Biochem Soc Trans; 1990 Aug; 18(4):657-8. PubMed ID: 2276499 [No Abstract] [Full Text] [Related]
30. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA. Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746 [TBL] [Abstract][Full Text] [Related]
31. Probing RNA structure with chemical reagents and enzymes. Ziehler WA; Engelke DR Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 6():Unit 6.1. PubMed ID: 18428862 [TBL] [Abstract][Full Text] [Related]
32. Different forms of U15 snoRNA are encoded in the introns of the ribosomal protein S1 gene of Xenopus laevis. Pellizzoni L; Crosio C; Campioni N; Loreni F; Pierandrei-Amaldi P Nucleic Acids Res; 1994 Nov; 22(22):4607-13. PubMed ID: 7984408 [TBL] [Abstract][Full Text] [Related]
33. RNA: RNA interactions in the large subunit ribosomal RNA of Euglena gracilis. Smallman DS; Schnare MN; Gray MW Biochim Biophys Acta; 1996 Feb; 1305(1-2):1-6. PubMed ID: 8605240 [TBL] [Abstract][Full Text] [Related]
34. Systematic mapping of rRNA 2'-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. Delhermite J; Tafforeau L; Sharma S; Marchand V; Wacheul L; Lattuca R; Desiderio S; Motorin Y; Bellefroid E; Lafontaine DLJ PLoS Genet; 2022 Jan; 18(1):e1010012. PubMed ID: 35041640 [TBL] [Abstract][Full Text] [Related]
35. Characterization of a 54-nucleotide gap region in the 28S rRNA gene of Schistosoma mansoni. van Keulen H; Mertz PM; LoVerde PT; Shi H; Rekosh DM Mol Biochem Parasitol; 1991 Apr; 45(2):205-14. PubMed ID: 2038356 [TBL] [Abstract][Full Text] [Related]
36. [ITS and 28S rDNA-LSU sequence analysis of Orientobilharzia turkestanicum from bovine and caprine hosts]. Qiu JH; Li L; Wang CR; Chen J; Chen AH; Zhai YQ Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2008 Jun; 26(3):183-6, 190. PubMed ID: 19160963 [TBL] [Abstract][Full Text] [Related]
37. Conformation of yeast 18S rRNA. Direct chemical probing of the 5' domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Lempereur L; Nicoloso M; Riehl N; Ehresmann C; Ehresmann B; Bachellerie JP Nucleic Acids Res; 1985 Dec; 13(23):8339-57. PubMed ID: 2417197 [TBL] [Abstract][Full Text] [Related]
38. Brix from xenopus laevis and brx1p from yeast define a new family of proteins involved in the biogenesis of large ribosomal subunits. Kaser A; Bogengruber E; Hallegger M; Doppler E; Lepperdinger G; Jantsch M; Breitenbach M; Kreil G Biol Chem; 2001 Dec; 382(12):1637-47. PubMed ID: 11843177 [TBL] [Abstract][Full Text] [Related]
39. A new 3'-terminus for Xenopus laevis 28S ribosomal RNA. Schnare MN; Gray MW Nucleic Acids Res; 1992 Feb; 20(3):608. PubMed ID: 1741295 [No Abstract] [Full Text] [Related]