These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 8086604)
1. Association between survival time and ordinal covariates. Le CT; Grambsch PM; Louis TA Biometrics; 1994 Mar; 50(1):213-9. PubMed ID: 8086604 [TBL] [Abstract][Full Text] [Related]
2. Nonparametric tests of association between survival time and continuously measured covariates: the logit-rank and associated procedures. O'Quigley J; Prentice RL Biometrics; 1991 Mar; 47(1):117-27. PubMed ID: 2049493 [TBL] [Abstract][Full Text] [Related]
3. Power calculation for a score test in the dependent censoring model. Lee SY Stat Med; 1996 May; 15(10):1049-58. PubMed ID: 8783441 [TBL] [Abstract][Full Text] [Related]
4. A regression survival model for testing the proportional hazards hypothesis. Quantin C; Moreau T; Asselain B; Maccario J; Lellouch J Biometrics; 1996 Sep; 52(3):874-85. PubMed ID: 8924576 [TBL] [Abstract][Full Text] [Related]
7. Regression analysis of doubly censored failure time data with frailty. Kim YJ Biometrics; 2006 Jun; 62(2):458-64. PubMed ID: 16918909 [TBL] [Abstract][Full Text] [Related]
8. A simple test for independent censoring under the proportional hazards model. Lee SY; Wolfe RA Biometrics; 1998 Sep; 54(3):1176-82. PubMed ID: 9840972 [TBL] [Abstract][Full Text] [Related]
9. A two-sample test for stochastic ordering with interval-censored data. Petroni GR; Wolfe RA Biometrics; 1994 Mar; 50(1):77-87. PubMed ID: 8086617 [TBL] [Abstract][Full Text] [Related]
10. A generalized log-rank-type test for comparing survivals with doubly interval-censored data. Kim J; Kim YJ; Nam CM Biom J; 2009 Aug; 51(4):689-96. PubMed ID: 19650058 [TBL] [Abstract][Full Text] [Related]
11. Some permutation tests for survival data. Sun Y; Sherman M Biometrics; 1996 Mar; 52(1):87-97. PubMed ID: 8934586 [TBL] [Abstract][Full Text] [Related]
12. Time-dependent covariates in the proportional subdistribution hazards model for competing risks. Beyersmann J; Schumacher M Biostatistics; 2008 Oct; 9(4):765-76. PubMed ID: 18434297 [TBL] [Abstract][Full Text] [Related]
13. Reduced-rank hazard regression for modelling non-proportional hazards. Perperoglou A; le Cessie S; van Houwelingen HC Stat Med; 2006 Aug; 25(16):2831-45. PubMed ID: 16158396 [TBL] [Abstract][Full Text] [Related]
14. A concordance test for independence in the presence of censoring. Oakes D Biometrics; 1982 Jun; 38(2):451-5. PubMed ID: 7052151 [TBL] [Abstract][Full Text] [Related]
15. The score test for independence in R x C contingency tables with missing data. Lipsitz SR; Fitzmaurice GM Biometrics; 1996 Jun; 52(2):751-62. PubMed ID: 8672711 [TBL] [Abstract][Full Text] [Related]
16. A specification test for univariate and multivariate proportional hazards models. Crouchley R; Pickles A Biometrics; 1993 Dec; 49(4):1067-76. PubMed ID: 8117901 [TBL] [Abstract][Full Text] [Related]
17. Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates. Schoop R; Graf E; Schumacher M Biometrics; 2008 Jun; 64(2):603-10. PubMed ID: 17764480 [TBL] [Abstract][Full Text] [Related]
18. A two-sample censored-data rank test for acceleration. Breslow NE; Edler L; Berger J Biometrics; 1984 Dec; 40(4):1049-62. PubMed ID: 6534408 [TBL] [Abstract][Full Text] [Related]
19. Analyzing doubly censored data with covariates, with application to AIDS. Kim MY; De Gruttola VG; Lagakos SW Biometrics; 1993 Mar; 49(1):13-22. PubMed ID: 8513098 [TBL] [Abstract][Full Text] [Related]
20. An application of a marked point process in pre-clinical medicine. Berridge DM Stat Med; 1996 Dec; 15(24):2751-62. PubMed ID: 8981684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]