These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8087081)
1. A dynamic numerical method for models of renal tubules. Layton HE; Pitman EB Bull Math Biol; 1994 May; 56(3):547-65. PubMed ID: 8087081 [TBL] [Abstract][Full Text] [Related]
2. Numerical simulation of propagating concentration profiles in renal tubules. Pitman EB; Layton HE; Moore LC Bull Math Biol; 1994 May; 56(3):567-86. PubMed ID: 8087082 [TBL] [Abstract][Full Text] [Related]
3. Quantitative analysis of mass and energy balance in non-ideal models of the renal counterflow system. Stephenson JL; Tewarson RP; Mejia R Proc Natl Acad Sci U S A; 1974 May; 71(5):1618-22. PubMed ID: 4525282 [TBL] [Abstract][Full Text] [Related]
4. A numerical method for renal models that represent tubules with abrupt changes in membrane properties. Layton AT; Layton HE J Math Biol; 2002 Dec; 45(6):549-67. PubMed ID: 12439590 [TBL] [Abstract][Full Text] [Related]
5. Physiological role of lateral interspaces and tight junctions in the renal tubule. Whittembury G Nihon Jinzo Gakkai Shi; 1986 Jul; 28(7):886-94. PubMed ID: 3795605 [No Abstract] [Full Text] [Related]
6. A computer model of the renal countercurrent system. Stewart J; Luggen ME; Valtin H Kidney Int; 1972 Nov; 2(5):253-63. PubMed ID: 4670904 [No Abstract] [Full Text] [Related]
7. Renal lithium clearance as a measure of the delivery of water and sodium from the proximal tubule in humans. Thomsen K; Olesen OV Am J Med Sci; 1984 Nov; 288(4):158-61. PubMed ID: 6496561 [TBL] [Abstract][Full Text] [Related]
8. An efficient numerical method for distributed-loop models of the urine concentrating mechanism. Layton AT; Layton HE Math Biosci; 2003 Feb; 181(2):111-32. PubMed ID: 12445757 [TBL] [Abstract][Full Text] [Related]
9. Channels for water flow in epithelia: characteristics and regulation. Whittembury G; Carpi-Medina P; González E Acta Physiol Pharmacol Latinoam; 1987; 37(4):555-63. PubMed ID: 2484000 [TBL] [Abstract][Full Text] [Related]
10. Independence of urea and water transport in rat inner medullary collecting duct. Knepper MA; Sands JM; Chou CL Am J Physiol; 1989 Apr; 256(4 Pt 2):F610-21. PubMed ID: 2705534 [TBL] [Abstract][Full Text] [Related]
11. Interactions of lysyl-bradykinin and antidiuretic hormone in the rabbit cortical collecting tubule. Schuster VL; Kokko JP; Jacobson HR J Clin Invest; 1984 Jun; 73(6):1659-67. PubMed ID: 6427278 [TBL] [Abstract][Full Text] [Related]
12. A region-based model framework for the rat urine concentrating mechanism. Layton AT; Layton HE Bull Math Biol; 2003 Sep; 65(5):859-901. PubMed ID: 12909254 [TBL] [Abstract][Full Text] [Related]
13. Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule. Kuwahara M; Verkman AS Biophys J; 1988 Oct; 54(4):587-93. PubMed ID: 3224144 [TBL] [Abstract][Full Text] [Related]
14. Countercurrent transport in the kidney. Stephenson JL Annu Rev Biophys Bioeng; 1978; 7():315-39. PubMed ID: 352242 [No Abstract] [Full Text] [Related]
15. Functional characterization of the alpha adrenergic receptor modulating the hydroosmotic effect of vasopressin on the rabbit cortical collecting tubule. Krothapalli RK; Suki WN J Clin Invest; 1984 Mar; 73(3):740-9. PubMed ID: 6323526 [TBL] [Abstract][Full Text] [Related]
18. Fluid waves in renal tubules. Sakai T; Craig DA; Wexler AS; Marsh DJ Biophys J; 1986 Nov; 50(5):805-13. PubMed ID: 3790686 [TBL] [Abstract][Full Text] [Related]
19. Computation of the osmotic water permeability of perfused tubule segments. Du Bois R; Vernoiry A; Abramow M Kidney Int; 1976 Dec; 10(6):478-9. PubMed ID: 1011542 [No Abstract] [Full Text] [Related]
20. Bifurcation analysis of TGF-mediated oscillations in SNGFR. Layton HE; Pitman EB; Moore LC Am J Physiol; 1991 Nov; 261(5 Pt 2):F904-19. PubMed ID: 1951721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]