These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 8087098)

  • 21. Role of different proteolytic systems in the degradation of muscle proteins during denervation atrophy.
    Furuno K; Goodman MN; Goldberg AL
    J Biol Chem; 1990 May; 265(15):8550-7. PubMed ID: 2187867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insulin suppresses the increased activities of lysosomal cathepsins and ubiquitin conjugation system in burn-injured rats.
    Solomon V; Madihally S; Yarmush M; Toner M
    J Surg Res; 2000 Sep; 93(1):120-6. PubMed ID: 10945952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca(2+)-dependent proteolysis in muscle wasting.
    Costelli P; Reffo P; Penna F; Autelli R; Bonelli G; Baccino FM
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2134-46. PubMed ID: 15893952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats.
    Temparis S; Asensi M; Taillandier D; Aurousseau E; Larbaud D; Obled A; Béchet D; Ferrara M; Estrela JM; Attaix D
    Cancer Res; 1994 Nov; 54(21):5568-73. PubMed ID: 7923198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle.
    Tiao G; Fagan JM; Samuels N; James JH; Hudson K; Lieberman M; Fischer JE; Hasselgren PO
    J Clin Invest; 1994 Dec; 94(6):2255-64. PubMed ID: 7989581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy.
    Medina R; Wing SS; Goldberg AL
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):631-7. PubMed ID: 7741690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis.
    Costelli P; Baccino FM
    Curr Opin Clin Nutr Metab Care; 2003 Jul; 6(4):407-12. PubMed ID: 12806214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of ubiquitin-proteasome-dependent proteolytic process in degradation of muscle protein from diabetic rabbits.
    Galban VD; Evangelista EA; Migliorini RH; do Carmo Kettelhut I
    Mol Cell Biochem; 2001 Sep; 225(1-):35-41. PubMed ID: 11716362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP depletion stimulates calcium-dependent protein breakdown in chick skeletal muscle.
    Fagan JM; Wajnberg EF; Culbert L; Waxman L
    Am J Physiol; 1992 May; 262(5 Pt 1):E637-43. PubMed ID: 1590374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Down-regulation of genes in the lysosomal and ubiquitin-proteasome proteolytic pathways in calpain-3-deficient muscle.
    Combaret L; Béchet D; Claustre A; Taillandier D; Richard I; Attaix D
    Int J Biochem Cell Biol; 2003 May; 35(5):676-84. PubMed ID: 12672459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid.
    Whitehouse AS; Smith HJ; Drake JL; Tisdale MJ
    Cancer Res; 2001 May; 61(9):3604-9. PubMed ID: 11325828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signals regulating accelerated muscle protein catabolism in uremia.
    Bailey JL; Price SR; England BK; Jurkovitz C; Wang X; Ding X; Mitch WE
    Miner Electrolyte Metab; 1997; 23(3-6):198-200. PubMed ID: 9387116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of ATP-ubiquitin-dependent proteolysis in muscle wasting.
    Attaix D; Taillandier D; Temparis S; Larbaud D; Aurousseau E; Combaret L; Voisin L
    Reprod Nutr Dev; 1994; 34(6):583-97. PubMed ID: 7840873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ubiquitin-proteasome proteolytic pathway in heart vs skeletal muscle: effects of acute diabetes.
    Liu Z; Miers WR; Wei L; Barrett EJ
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1255-60. PubMed ID: 11027619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle.
    Murphy RM; Verburg E; Lamb GD
    J Physiol; 2006 Oct; 576(Pt 2):595-612. PubMed ID: 16857710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Branched-chain amino acids inhibit proteolysis in rat skeletal muscle: mechanisms involved.
    Busquets S; Alvarez B; Llovera M; Agell N; López-Soriano FJ; Argilés JM
    J Cell Physiol; 2000 Sep; 184(3):380-4. PubMed ID: 10911370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myofibrillar protein turnover: the proteasome and the calpains.
    Goll DE; Neti G; Mares SW; Thompson VF
    J Anim Sci; 2008 Apr; 86(14 Suppl):E19-35. PubMed ID: 17709792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Necessary but not sufficient: the role of glucocorticoids in the acidosis-induced increase in levels of mRNAs encoding proteins of the ATP-dependent proteolytic pathway in rat muscle.
    Price SR; Bailey JL; England BK
    Miner Electrolyte Metab; 1996; 22(1-3):72-5. PubMed ID: 8676830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of proteolysis during reloading of the unweighted soleus muscle.
    Taillandier D; Aurousseau E; Combaret L; Guezennec CY; Attaix D
    Int J Biochem Cell Biol; 2003 May; 35(5):665-75. PubMed ID: 12672458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of streptozotocin diabetes and fasting on intracellular sodium and adenosine triphosphate in rat soleus muscle.
    Moore RD; Munford JW; Pillsworth TJ
    J Physiol; 1983 May; 338():277-94. PubMed ID: 6348255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.