BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8087242)

  • 1. Random chemical modification of hemoglobin to identify chloride binding sites in the central dyad axis: their role in control of oxygen affinity.
    Manning JM
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(2):199-205. PubMed ID: 8087242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random chemical modification of the oxygen-linked chloride-binding sites of hemoglobin: those in the central dyad axis may influence the transition between deoxy- and oxy-hemoglobin.
    Ueno H; Popowicz AM; Manning JM
    J Protein Chem; 1993 Oct; 12(5):561-70. PubMed ID: 8141998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proton Bohr factor of native and crosslinker treated hemoglobins--its possible significance for the efficacy of hemoglobin based artificial oxygen carriers.
    Barnikol WK
    Adv Exp Med Biol; 1994; 361():363-70. PubMed ID: 7597959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional, oxygen-linked chloride binding sites of hemoglobin are contiguous within a channel in the central cavity.
    Ueno H; Manning JM
    J Protein Chem; 1992 Apr; 11(2):177-85. PubMed ID: 1326985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Metal-Organic Framework-Hemoglobin Conjugates.
    Wang W; Wang L; Huang Y; Xie Z; Jing X
    Chem Asian J; 2016 Mar; 11(5):750-6. PubMed ID: 26692560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and chemical modifications of hemoglobin in developing hemoglobin based oxygen carriers.
    Haney CR; Buehler PW; Gulati A
    Adv Drug Deliv Rev; 2000 Feb; 40(3):153-69. PubMed ID: 10837787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Cl- and H+ on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(5):1543-9. PubMed ID: 15458341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular engineering of proteins with predefined function. Part I: Design of a hemoglobin-based oxygen carrier.
    Sivan S; Lotan N
    Biomol Eng; 2003 Mar; 20(3):83-90. PubMed ID: 12684069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chloride shift may facilitate oxygen loading and unloading to/from the hemoglobin from the brown bear (Ursus arctos L.).
    Brix O; Thomsen B; Nuutinen M; Hakala A; Pudas J; Giardina B
    Comp Biochem Physiol B; 1990; 95(4):865-8. PubMed ID: 2111752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process.
    Tsai CH; Shen TJ; Ho NT; Ho C
    Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of ferulic acid modified hemoglobin.
    Guo S; Wang P; Chen C; Meng Z; Qi D; Wang X
    Artif Cells Nanomed Biotechnol; 2016 Jun; 44(4):1075-9. PubMed ID: 26838267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimeric hemoglobin subunits: functional properties of a recombinant beta/alpha hemoglobin.
    Dumoulin A; Baudin V; Kiger L; Edelstein SJ; Marden M; Poyart C; Pagnier J
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):733-8. PubMed ID: 7994395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aryloxyalkanoic Acids as Non-Covalent Modifiers of the Allosteric Properties of Hemoglobin.
    Omar AM; Mahran MA; Ghatge MS; Bamane FH; Ahmed MH; El-Araby ME; Abdulmalik O; Safo MK
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27529207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic interaction between oxygenation-linked lactate and CO2 binding to human hemoglobin.
    Nielsen MS; Weber RE
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):429-34. PubMed ID: 17258917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit-directed click coupling via doubly cross-linked hemoglobin efficiently produces readily purified functional bis-tetrameric oxygen carriers.
    Singh S; Dubinsky-Davidchik IS; Yang Y; Kluger R
    Org Biomol Chem; 2015 Dec; 13(45):11118-28. PubMed ID: 26400017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen binding properties of hemoglobin from the white rhinoceros (beta 2-GLU) and the tapir.
    Baumann R; Mazur G; Braunitzer G
    Respir Physiol; 1984 Apr; 56(1):1-9. PubMed ID: 6429805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas exchange properties of goat hemoglobins A and C.
    Winslow RM; Swenberg ML; Benson J; Perrella M; Benazzi L
    J Biol Chem; 1989 Mar; 264(9):4812-7. PubMed ID: 2494177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of crocodilian hemoglobins and allosteric regulation by chloride, ATP, and CO
    Fago A; Natarajan C; Pettinati M; Hoffmann FG; Wang T; Weber RE; Drusin SI; Issoglio F; Martí MA; Estrin D; Storz JF
    Am J Physiol Regul Integr Comp Physiol; 2020 Mar; 318(3):R657-R667. PubMed ID: 32022587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers.
    Jansman MMT; Hosta-Rigau L
    Adv Colloid Interface Sci; 2018 Oct; 260():65-84. PubMed ID: 30177214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.