These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 8087294)

  • 1. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A collocation--Galerkin finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):743-57. PubMed ID: 7927397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reentry in heterogeneous cardiac tissue described by the Luo-Rudy ventricular action potential model.
    Ten Tusscher KH; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2003 Feb; 284(2):H542-8. PubMed ID: 12388228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias.
    Starmer CF; Romashko DN; Reddy RS; Zilberter YI; Starobin J; Grant AO; Krinsky VI
    Circulation; 1995 Aug; 92(3):595-605. PubMed ID: 7634474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of diastolic outward current deactivation kinetics on the induction of spiral waves.
    Kogan BY; Karplus WJ; Billett BS; Pang AT; Khan SS; Mandel WJ; Karagueuzian HS
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1688-93. PubMed ID: 1721159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle.
    Pertsov AM; Davidenko JM; Salomonsz R; Baxter WT; Jalife J
    Circ Res; 1993 Mar; 72(3):631-50. PubMed ID: 8431989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in conduction velocity due to fiber curvature in cultured neonatal rat ventricular myocytes.
    Bourgeois EB; Fast VG; Collins RL; Gladden JD; Rogers JM
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):855-61. PubMed ID: 19272891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.
    Weise LD; Panfilov AV
    PLoS One; 2011; 6(11):e27264. PubMed ID: 22114667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attraction and repulsion of spiral waves by inhomogeneity of conduction anisotropy--a model of spiral wave interaction with electrical remodeling of heart tissue.
    Kuklik P; Sanders P; Szumowski L; Żebrowski JJ
    J Biol Phys; 2013 Jan; 39(1):67-80. PubMed ID: 23860834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiral wave breakup in excitable media with an inhomogeneity of conduction anisotropy.
    Kuklik P; Szumowski L; Sanders P; Zebrowski JJ
    Comput Biol Med; 2010 Sep; 40(9):775-80. PubMed ID: 20684951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring curvature and velocity vector fields for waves of cardiac excitation in 2-D media.
    Kay MW; Gray RA
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):50-63. PubMed ID: 15651564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiral waves in a computer model of cardiac excitation.
    Abildskov JA; Lux RL
    Pacing Clin Electrophysiol; 1994 May; 17(5 Pt 1):944-52. PubMed ID: 7517529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle.
    Cabo C; Pertsov AM; Baxter WT; Davidenko JM; Gray RA; Jalife J
    Circ Res; 1994 Dec; 75(6):1014-28. PubMed ID: 7525101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.
    Qu Z; Weiss JN; Garfinkel A
    Am J Physiol; 1999 Jan; 276(1):H269-83. PubMed ID: 9887041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of spiral wave attenuation by low-frequency periodic planar fronts.
    de la Casa MA; de la Rubia FJ; Ivanov PCh
    Chaos; 2007 Mar; 17(1):015109. PubMed ID: 17411266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Numerical simulation on evolution and control of spiral wave in heart].
    Liu L; Li L; Zhang G; Wang G; Qu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):485-7. PubMed ID: 17713244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of spiral waves in a piece of isotropic myocardium.
    Wohlfart B; Ohlén G
    Clin Physiol; 1999 Jan; 19(1):11-21. PubMed ID: 10068863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.