These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Altering the speract-induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility. Wood CD; Nishigaki T; Tatsu Y; Yumoto N; Baba SA; Whitaker M; Darszon A Dev Biol; 2007 Jun; 306(2):525-37. PubMed ID: 17467684 [TBL] [Abstract][Full Text] [Related]
3. Participation of a K(+) channel modulated directly by cGMP in the speract-induced signaling cascade of strongylocentrotus purpuratus sea urchin sperm. Galindo BE; Beltrán C; Cragoe EJ; Darszon A Dev Biol; 2000 May; 221(2):285-94. PubMed ID: 10790326 [TBL] [Abstract][Full Text] [Related]
4. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber. Morita M; Kitamura M; Nakajima A; Sri Susilo E; Takemura A; Okuno M Cell Motil Cytoskeleton; 2009 Apr; 66(4):202-14. PubMed ID: 19235200 [TBL] [Abstract][Full Text] [Related]
5. Selective modulation by cGMP of the K+ channel activated by speract. Cook SP; Babcock DF J Biol Chem; 1993 Oct; 268(30):22402-7. PubMed ID: 7693667 [TBL] [Abstract][Full Text] [Related]
6. Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility. Darszon A; Guerrero A; Galindo BE; Nishigaki T; Wood CD Int J Dev Biol; 2008; 52(5-6):595-606. PubMed ID: 18649273 [TBL] [Abstract][Full Text] [Related]
7. The signal flow and motor response controling chemotaxis of sea urchin sperm. Kaupp UB; Solzin J; Hildebrand E; Brown JE; Helbig A; Hagen V; Beyermann M; Pampaloni F; Weyand I Nat Cell Biol; 2003 Feb; 5(2):109-17. PubMed ID: 12563276 [TBL] [Abstract][Full Text] [Related]
11. Sperm chemotaxis and regulation of flagellar movement by Ca2+. Yoshida M; Yoshida K Mol Hum Reprod; 2011 Aug; 17(8):457-65. PubMed ID: 21610215 [TBL] [Abstract][Full Text] [Related]
14. Regulation of sperm flagellar motility by calcium and cAMP-dependent phosphorylation. Brokaw CJ J Cell Biochem; 1987 Nov; 35(3):175-84. PubMed ID: 2826504 [TBL] [Abstract][Full Text] [Related]
15. Revisiting the role of H+ in chemotactic signaling of sperm. Solzin J; Helbig A; Van Q; Brown JE; Hildebrand E; Weyand I; Kaupp UB J Gen Physiol; 2004 Aug; 124(2):115-24. PubMed ID: 15277573 [TBL] [Abstract][Full Text] [Related]
16. A K+-selective cGMP-gated ion channel controls chemosensation of sperm. Strünker T; Weyand I; Bönigk W; Van Q; Loogen A; Brown JE; Kashikar N; Hagen V; Krause E; Kaupp UB Nat Cell Biol; 2006 Oct; 8(10):1149-54. PubMed ID: 16964244 [TBL] [Abstract][Full Text] [Related]
17. Peptide-induced hyperactivation-like vigorous flagellar movement in starfish sperm. Shiba K; Tagata T; Ohmuro J; Mogami Y; Matsumoto M; Hoshi M; Baba SA Zygote; 2006 Feb; 14(1):23-32. PubMed ID: 16700972 [TBL] [Abstract][Full Text] [Related]
18. Fluid dynamic model of invertebrate sperm chemotactic motility with varying calcium inputs. Olson SD J Biomech; 2013 Jan; 46(2):329-37. PubMed ID: 23218141 [TBL] [Abstract][Full Text] [Related]
20. Na+/Ca2+ exchanger modulates the flagellar wave pattern for the regulation of motility activation and chemotaxis in the ascidian spermatozoa. Shiba K; Márián T; Krasznai Z; Baba SA; Morisawa M; Yoshida M Cell Motil Cytoskeleton; 2006 Oct; 63(10):623-32. PubMed ID: 16869011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]