These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8088514)

  • 1. SIP1 is a catabolite repression-specific negative regulator of GAL gene expression.
    Mylin LM; Bushman VL; Long RM; Yu X; Lebo CM; Blank TE; Hopper JE
    Genetics; 1994 Jul; 137(3):689-700. PubMed ID: 8088514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and carbon source regulation of phosphorylation of Sip1p, a Snf1p-associated protein involved in carbon response in Saccharomyces cerevisiae.
    Long RM; Hopper JE
    Yeast; 1995 Mar; 11(3):233-46. PubMed ID: 7785324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae.
    Erickson JR; Johnston M
    Genetics; 1993 Nov; 135(3):655-64. PubMed ID: 8293971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae.
    Hedges D; Proft M; Entian KD
    Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex.
    Yang X; Jiang R; Carlson M
    EMBO J; 1994 Dec; 13(24):5878-86. PubMed ID: 7813428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae.
    Erickson JR; Johnston M
    Genetics; 1994 Apr; 136(4):1271-8. PubMed ID: 8013904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex.
    Jiang R; Carlson M
    Mol Cell Biol; 1997 Apr; 17(4):2099-106. PubMed ID: 9121458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis.
    Zhang J; Olsson L; Nielsen J
    Mol Microbiol; 2010 Jul; 77(2):371-83. PubMed ID: 20545859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protein kinase substrate identified by the two-hybrid system.
    Yang X; Hubbard EJ; Carlson M
    Science; 1992 Jul; 257(5070):680-2. PubMed ID: 1496382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism.
    Vincent O; Townley R; Kuchin S; Carlson M
    Genes Dev; 2001 May; 15(9):1104-14. PubMed ID: 11331606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae.
    Johnston M; Flick JS; Pexton T
    Mol Cell Biol; 1994 Jun; 14(6):3834-41. PubMed ID: 8196626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast regulatory gene GAL3: carbon regulation; UASGal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases.
    Bajwa W; Torchia TE; Hopper JE
    Mol Cell Biol; 1988 Aug; 8(8):3439-47. PubMed ID: 3062381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of dominant mutations resistant to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae.
    Matsumoto K; Toh-e A; Oshima Y
    Mol Cell Biol; 1981 Feb; 1(2):83-93. PubMed ID: 6765598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
    Schüller HJ
    Curr Genet; 2003 Jun; 43(3):139-60. PubMed ID: 12715202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Source-dependent assembly of the Snf1p kinase complex in Candida albicans.
    Corvey C; Koetter P; Beckhaus T; Hack J; Hofmann S; Hampel M; Stein T; Karas M; Entian KD
    J Biol Chem; 2005 Jul; 280(27):25323-30. PubMed ID: 15890650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression.
    Griggs DW; Johnston M
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8597-601. PubMed ID: 1924319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae.
    Muranaka T; Banno H; Machida Y
    Mol Cell Biol; 1994 May; 14(5):2958-65. PubMed ID: 8164654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation.
    Ye T; Elbing K; Hohmann S
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2814-2826. PubMed ID: 18757815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning of Saccharomyces cerevisiae STE5 as a suppressor of a Ste20 protein kinase mutant: structural and functional similarity of Ste5 to Far1.
    Leberer E; Dignard D; Harcus D; Hougan L; Whiteway M; Thomas DY
    Mol Gen Genet; 1993 Nov; 241(3-4):241-54. PubMed ID: 8246877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p.
    Suzuki-Fujimoto T; Fukuma M; Yano KI; Sakurai H; Vonika A; Johnston SA; Fukasawa T
    Mol Cell Biol; 1996 May; 16(5):2504-8. PubMed ID: 8628318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.