BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 8088545)

  • 1. Expression of the division-controlling gene ftsZ during growth and sporulation of the filamentous bacterium Streptomyces griseus.
    Dharmatilake AJ; Kendrick KE
    Gene; 1994 Sep; 147(1):21-8. PubMed ID: 8088545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of ftsZ transcription during septation of Streptomyces griseus.
    Kwak J; Dharmatilake AJ; Jiang H; Kendrick KE
    J Bacteriol; 2001 Sep; 183(17):5092-101. PubMed ID: 11489862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators.
    Ueda K; Miyake K; Horinouchi S; Beppu T
    J Bacteriol; 1993 Apr; 175(7):2006-16. PubMed ID: 8458843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ.
    McCormick JR; Su EP; Driks A; Losick R
    Mol Microbiol; 1994 Oct; 14(2):243-54. PubMed ID: 7830569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of a gene involved in aerial mycelium formation in Streptomyces griseus.
    Kudo N; Kimura M; Beppu T; Horinouchi S
    J Bacteriol; 1995 Nov; 177(22):6401-10. PubMed ID: 7592414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of a non-sporulating strain of Streptomyces coelicolor A3(2) by the manipulation of a developmentally controlled ftsZ promoter.
    Flärdh K; Leibovitz E; Buttner MJ; Chater KF
    Mol Microbiol; 2000 Nov; 38(4):737-49. PubMed ID: 11115109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of ftsZ gene and its protein product from Streptomyces collinus producing kirromycin.
    Zhulanova E; Mikulík K
    Biochem Biophys Res Commun; 1998 Aug; 249(2):556-61. PubMed ID: 9712736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and characterization of the obg gene of Streptomyces griseus in relation to the onset of morphological differentiation.
    Okamoto S; Itoh M; Ochi K
    J Bacteriol; 1997 Jan; 179(1):170-9. PubMed ID: 8981995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of the conserved regulatory operon by its aerial mycelium-inducing activity in an amfR mutant of Streptomyces griseus.
    Komatsu M; Kuwahara Y; Hiroishi A; Hosono K; Beppu T; Ueda K
    Gene; 2003 Mar; 306():79-89. PubMed ID: 12657469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional and functional analysis of the gene for factor C, an extracellular signal protein involved in cytodifferentiation of Streptomyces griseus.
    Biró S; Birkó Z; van Wezel GP
    Antonie Van Leeuwenhoek; 2000 Dec; 78(3-4):277-85. PubMed ID: 11386350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three genes hrdB, hrdD and hrdT of Streptomyces griseus IMRU 3570, encoding sigma factor-like proteins, are differentially expressed under specific nutritional conditions.
    Marcos AT; Gutiérrez S; Díez B; Fernández FJ; Oguiza JA; Martín JF
    Gene; 1995 Feb; 153(1):41-8. PubMed ID: 7883183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of sigma(H) and related sigma factors in glucose-dependent initiation of morphological and physiological development of Streptomyces griseus.
    Takano H; Hosono K; Beppu T; Ueda K
    Gene; 2003 Nov; 320():127-35. PubMed ID: 14597396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide sequence of a principal sigma factor gene (hrdB) of Streptomyces griseus.
    Shinkawa H; Hatada Y; Okada M; Kinashi H; Nimi O
    J Biochem; 1995 Sep; 118(3):494-9. PubMed ID: 8690707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular analysis of sporulation in Streptomyces griseus.
    McCue LA; Kwak J; Babcock MJ; Kendrick KE
    Gene; 1992 Jun; 115(1-2):173-9. PubMed ID: 1612433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A missense mutation in ftsZ differentially affects vegetative and developmentally controlled cell division in Streptomyces coelicolor A3(2).
    Grantcharova N; Ubhayasekera W; Mowbray SL; McCormick JR; Flärdh K
    Mol Microbiol; 2003 Feb; 47(3):645-56. PubMed ID: 12535067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus.
    Seo JW; Ohnishi Y; Hirata A; Horinouchi S
    J Bacteriol; 2002 Jan; 184(1):91-103. PubMed ID: 11741848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of the A-factor receptor gene from Streptomyces griseus.
    Onaka H; Ando N; Nihira T; Yamada Y; Beppu T; Horinouchi S
    J Bacteriol; 1995 Nov; 177(21):6083-92. PubMed ID: 7592371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria.
    Kobayashi M; Asai Y; Hatakeyama K; Kijima N; Wachi M; Nagai K; Yukawa H
    Biochem Biophys Res Commun; 1997 Jul; 236(2):383-8. PubMed ID: 9240446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of dcw cluster from Streptomyces collinus producing kirromycin.
    Mikulík K; Zhulanova E; Krátký M; Kofronová O; Benada O
    Biochem Biophys Res Commun; 2000 Feb; 268(2):282-8. PubMed ID: 10679194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell division gene ftsQ is required for efficient sporulation but not growth and viability in Streptomyces coelicolor A3(2).
    McCormick JR; Losick R
    J Bacteriol; 1996 Sep; 178(17):5295-301. PubMed ID: 8752351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.