These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8088779)

  • 21. High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia.
    Meglecz E; Petenian F; Danchin E; D'Acier AC; Rasplus JY; Faure E
    Mol Ecol; 2004 Jun; 13(6):1693-700. PubMed ID: 15140111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genomic organization of a 225-kb region in Xq28 containing the gene for X-linked myotubular myopathy (MTM1) and a related gene (MTMR1).
    Kioschis P; Wiemann S; Heiss NS; Francis F; Götz C; Poustka A; Taudien S; Platzer M; Wiehe T; Beckmann G; Weber J; Nordsiek G; Rosenthal A
    Genomics; 1998 Dec; 54(2):256-66. PubMed ID: 9828128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Survey of human and rat microsatellites.
    Beckman JS; Weber JL
    Genomics; 1992 Apr; 12(4):627-31. PubMed ID: 1572635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of eastern Pacific abalone.
    Muchmore ME; Moy GW; Swanson WJ; Vacquier VD
    Mol Mar Biol Biotechnol; 1998 Mar; 7(1):1-6. PubMed ID: 9597772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microsatellite markers and the analysis of genetic disease.
    Holmes NG
    Br Vet J; 1994; 150(5):411-21. PubMed ID: 7953576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleotide sequences flanking dinucleotide microsatellites in the human, mouse and Drosophila genomes.
    Matula M; Kypr J
    J Biomol Struct Dyn; 1999 Oct; 17(2):275-80. PubMed ID: 10563577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT)n.(GA)n microsatellite embedded within the U2 repeat unit.
    Liao D; Weiner AM
    Genomics; 1995 Dec; 30(3):583-93. PubMed ID: 8825646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymatic amplification of synthetic oligodeoxyribonucleotides: implications for triplet repeat expansions in the human genome.
    Behn-Krappa A; Doerfler W
    Hum Mutat; 1994; 3(1):19-24. PubMed ID: 8118462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The first characterisation of the overall variability of repetitive units in a species reveals unexpected features of satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2005 Apr; 349():153-64. PubMed ID: 15777738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microsatellite and trinucleotide-repeat evolution: evidence for mutational bias and different rates of evolution in different lineages.
    Rubinsztein DC; Amos B; Cooper G
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1095-9. PubMed ID: 10434312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retrotransposal integration of mobile genetic elements in human diseases.
    Miki Y
    J Hum Genet; 1998; 43(2):77-84. PubMed ID: 9621510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Search for expansion of CAG-repeats in DNA sequences expressed in the brain of humans with psychiatric and neurological diseases].
    Ovchinnikov IV; Braga EA; Aksenova MG; Druzina EB; Ovchinnikova OI; Illarioshkin SN; Kaleda VG; Markova ED; Ivanova-Smolenskaia IA
    Vopr Med Khim; 1996; 42(4):333-7. PubMed ID: 9254522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low frequency of microsatellites in the avian genome.
    Primmer CR; Raudsepp T; Chowdhary BP; Møller AP; Ellegren H
    Genome Res; 1997 May; 7(5):471-82. PubMed ID: 9149943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long, polymorphic microsatellites in simple organisms.
    Field D; Wills C
    Proc Biol Sci; 1996 Feb; 263(1367):209-15. PubMed ID: 8728984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates.
    Lagercrantz U; Ellegren H; Andersson L
    Nucleic Acids Res; 1993 Mar; 21(5):1111-5. PubMed ID: 8464696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes.
    Stallings RL; Ford AF; Nelson D; Torney DC; Hildebrand CE; Moyzis RK
    Genomics; 1991 Jul; 10(3):807-15. PubMed ID: 1909685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris.
    Estoup A; Solignac M; Harry M; Cornuet JM
    Nucleic Acids Res; 1993 Mar; 21(6):1427-31. PubMed ID: 8464734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species.
    Moore SS; Sargeant LL; King TJ; Mattick JS; Georges M; Hetzel DJ
    Genomics; 1991 Jul; 10(3):654-60. PubMed ID: 1889811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying genes within the genome: new ways for finding the needle in a haystack.
    Hochgeschwender U; Brennan MB
    Bioessays; 1991 Mar; 13(3):139-44. PubMed ID: 1872824
    [No Abstract]   [Full Text] [Related]  

  • 40. Sequence analysis of trinucleotide repeat microsatellites from an enrichment library of the equine genome.
    Tozaki T; Inoue S; Mashima S; Ohta M; Miura N; Tomita M
    Genome; 2000 Apr; 43(2):354-65. PubMed ID: 10791825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.