These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8089159)

  • 1. Distraction and compression loads enhance spine torsional stiffness.
    Goodwin RR; James KS; Daniels AU; Dunn HK
    J Biomech; 1994 Aug; 27(8):1049-57. PubMed ID: 8089159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load-bearing and stress analysis of the human spine under a novel wrapping compression loading.
    Shirazi-Adl A; Parnianpour M
    Clin Biomech (Bristol, Avon); 2000 Dec; 15(10):718-25. PubMed ID: 11050353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural behavior of human lumbar spinal motion segments.
    Gardner-Morse MG; Stokes IA
    J Biomech; 2004 Feb; 37(2):205-12. PubMed ID: 14706323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of biomechanical parameters in the lumbar spine during static sagittal plane lifting.
    Kong WZ; Goel VK; Gilbertson LG
    J Biomech Eng; 1998 Apr; 120(2):273-80. PubMed ID: 10412390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of anterior thoracolumbar plate application on the compressive loading of the strut graft.
    Harris MB; Thomas KA; Igram CM; Bearden CM
    Spine (Phila Pa 1976); 1996 Jul; 21(13):1487-93. PubMed ID: 8817774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posteriorly directed shear loads and disc degeneration affect the torsional stiffness of spinal motion segments: a biomechanical modeling study.
    Homminga J; Lehr AM; Meijer GJ; Janssen MM; Schlösser TP; Verkerke GJ; Castelein RM
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1313-9. PubMed ID: 23797503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.
    Shirazi-Adl A
    J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical effects of sequential resection of the posterior ligamentous complex on intradiscal pressure and resistance to compression forces.
    Merter A; Karaca MO; Yazar T
    Acta Orthop Traumatol Turc; 2019 Nov; 53(6):502-506. PubMed ID: 31537433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanics of lumbosacral spinal fusion in combined compression-torsion loads.
    Yang SW; Langrana NA; Lee CK
    Spine (Phila Pa 1976); 1986 Nov; 11(9):937-41. PubMed ID: 3824071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled motions in human and porcine thoracic and lumbar spines.
    Kingma I; Busscher I; van der Veen AJ; Verkerke GJ; Veldhuizen AG; Homminga J; van Dieën JH
    J Biomech; 2018 Mar; 70():51-58. PubMed ID: 29246473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anterior thoracic posture increases thoracolumbar disc loading.
    Harrison DE; Colloca CJ; Harrison DD; Janik TJ; Haas JW; Keller TS
    Eur Spine J; 2005 Apr; 14(3):234-42. PubMed ID: 15168237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the torsional stiffness of the lumbar spine in flexion and extension.
    Garges KJ; Nourbakhsh A; Morris R; Yang J; Mody M; Patterson R
    J Manipulative Physiol Ther; 2008 Oct; 31(8):563-9. PubMed ID: 18984238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis.
    Rohlmann A; Burra NK; Zander T; Bergmann G
    Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional stiffness in a thoracolumbar en-bloc spondylectomy model: a biomechanical in vitro study.
    Disch AC; Luzzati A; Melcher I; Schaser KD; Feraboli F; Schmoelz W
    Clin Biomech (Bristol, Avon); 2007 Nov; 22(9):957-64. PubMed ID: 17854958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model.
    Gurr KR; McAfee PC; Shih CM
    J Bone Joint Surg Am; 1988 Sep; 70(8):1182-91. PubMed ID: 3417703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analog studies of forces in the human spine: mechanical properties and motion segment behavior.
    Schultz AB; Belytschko TB; Andriacchi TP; Galante JO
    J Biomech; 1973 Jul; 6(4):373-83. PubMed ID: 4732937
    [No Abstract]   [Full Text] [Related]  

  • 18. Flexion-extension response of the thoracolumbar spine under compressive follower preload.
    Stanley SK; Ghanayem AJ; Voronov LI; Havey RM; Paxinos O; Carandang G; Zindrick MR; Patwardhan AG
    Spine (Phila Pa 1976); 2004 Nov; 29(22):E510-4. PubMed ID: 15543052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Could junctional problems at the end of a long construct be addressed by providing a graduated reduction in stiffness? A biomechanical investigation.
    Durrani A; Jain V; Desai R; Bucklen B; Ingalhalikar A; Muzumdar A; Moldavsky M; Khalil S
    Spine (Phila Pa 1976); 2012 Jan; 37(1):E16-22. PubMed ID: 21540778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical evaluation of methods of posterior stabilization of the spine and posterior lumbar interbody arthrodesis for lumbosacral isthmic spondylolisthesis. A calf-spine model.
    Shirado O; Zdeblick TA; McAfee PC; Warden KE
    J Bone Joint Surg Am; 1991 Apr; 73(4):518-26. PubMed ID: 2013591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.