These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8089164)

  • 21. Elastic properties of microstructural components of human bone tissue as measured by nanoindentation.
    Rho JY; Roy ME; Tsui TY; Pharr GM
    J Biomed Mater Res; 1999 Apr; 45(1):48-54. PubMed ID: 10397957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of the microhardness and Young's modulus of human enamel and dentine using an indentation technique.
    Meredith N; Sherriff M; Setchell DJ; Swanson SA
    Arch Oral Biol; 1996 Jun; 41(6):539-45. PubMed ID: 8937644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elastic constants of composites formed from PMMA bone cement and anisotropic bovine tibial cancellous bone.
    Williams JL; Johnson WJ
    J Biomech; 1989; 22(6-7):673-82. PubMed ID: 2808448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of model variables and fixation post length effects on stresses around a prosthesis in the proximal tibia.
    Askew MJ; Lewis JL
    J Biomech Eng; 1981 Nov; 103(4):239-45. PubMed ID: 7311489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.
    Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Indentation stiffness of the cancellous bone in the distal human tibia.
    Aitken GK; Bourne RB; Finlay JB; Rorabeck CH; Andreae PR
    Clin Orthop Relat Res; 1985 Dec; (201):264-70. PubMed ID: 4064414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A finite difference model of load-induced fluid displacements within bone under mechanical loading.
    Steck R; Niederer P; Knothe Tate ML
    Med Eng Phys; 2000 Mar; 22(2):117-25. PubMed ID: 10854965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation of corneal acoustic and elastic properties in a canine eye model.
    He X; Liu J
    Invest Ophthalmol Vis Sci; 2011 Feb; 52(2):731-6. PubMed ID: 20926820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone.
    Currey JD
    J Biomech; 1988; 21(2):131-9. PubMed ID: 3350827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the effect of mesh density on the material property discretisation within QCT based FE models: a practical example using the implanted proximal tibia.
    Perillo-Marcone A; Alonso-Vazquez A; Taylor M
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):17-26. PubMed ID: 12623434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanical properties of cancellous bone in the proximal tibia of ovariectomized rats.
    Hogan HA; Ruhmann SP; Sampson HW
    J Bone Miner Res; 2000 Feb; 15(2):284-92. PubMed ID: 10703930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus.
    Bai Y; Deng Y; Zheng Y; Li Y; Zhang R; Lv Y; Zhao Q; Wei S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():565-576. PubMed ID: 26652409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-dimensional finite element analysis of the upper tibia.
    Little RB; Wevers HW; Siu D; Cooke TD
    J Biomech Eng; 1986 May; 108(2):111-9. PubMed ID: 3724097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical characterization of living and dead undifferentiated human adipose-derived stem cells by using atomic force microscopy.
    Hu K; Zhao F; Wang Q
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1319-23. PubMed ID: 24044923
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of porosity, fabric and fractal dimension as predictors of the Young's modulus of equine cancellous bone.
    Haire TJ; Hodgskinson R; Ganney PS; Langton CM
    Med Eng Phys; 1998 Nov; 20(8):588-93. PubMed ID: 9888237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of the interface on the bone stresses beneath tibial components.
    Garg A; Walker PS
    J Biomech; 1986; 19(12):957-67. PubMed ID: 3818674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elasticity-density and viscoelasticity-density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements.
    Bernard S; Schneider J; Varga P; Laugier P; Raum K; Grimal Q
    Biomech Model Mechanobiol; 2016 Feb; 15(1):97-109. PubMed ID: 26070349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial orientation in bone samples and Young's modulus.
    Geraets WG; van Ruijven LJ; Verheij JG; van der Stelt PF; van Eijden TM
    J Biomech; 2008 Jul; 41(10):2206-10. PubMed ID: 18539283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The in vitro measurement of ultrasound in cancellous bone.
    Langton CM; Hodgskinson R
    Stud Health Technol Inform; 1997; 40():175-99. PubMed ID: 10168878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of structural failure of tibial bone models under physiological loads: effect of CT density-modulus relationships.
    Tuncer M; Hansen UN; Amis AA
    Med Eng Phys; 2014 Aug; 36(8):991-7; discussion 991. PubMed ID: 24907128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.