BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8089839)

  • 1. Liquid-like side-chain dynamics in myoglobin.
    Kneller GR; Smith JC
    J Mol Biol; 1994 Sep; 242(3):181-5. PubMed ID: 8089839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical transition of myoglobin revealed by inelastic neutron scattering.
    Doster W; Cusack S; Petry W
    Nature; 1989 Feb; 337(6209):754-6. PubMed ID: 2918910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature protein dynamics: a simulation analysis of interprotein vibrations and the boson peak at 150 k.
    Kurkal-Siebert V; Smith JC
    J Am Chem Soc; 2006 Feb; 128(7):2356-64. PubMed ID: 16478191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding water: molecular dynamics simulations of myoglobin.
    Gu W; Garcia AE; Schoenborn BP
    Basic Life Sci; 1996; 64():289-98. PubMed ID: 9092458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picosecond timescale rigid-helix and side-chain motions in deoxymyoglobin.
    Furois-Corbin S; Smith JC; Kneller GR
    Proteins; 1993 Jun; 16(2):141-54. PubMed ID: 8332605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of hydration in myoglobin.
    Gu W; Schoenborn BP
    Proteins; 1995 May; 22(1):20-6. PubMed ID: 7675783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra.
    Smith J; Kuczera K; Karplus M
    Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1601-5. PubMed ID: 2304919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large scale motions in a biosensor protein glucose oxidase: a combined approach by QENS, normal mode analysis, and molecular dynamics studies.
    Tatke SS; Loong CK; D'Souza N; Schoephoerster RT; Prabhakaran M
    Biopolymers; 2008 Jul; 89(7):582-94. PubMed ID: 18273893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering.
    Cusack S; Doster W
    Biophys J; 1990 Jul; 58(1):243-51. PubMed ID: 2166599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data.
    Loncharich RJ; Brooks BR
    J Mol Biol; 1990 Oct; 215(3):439-55. PubMed ID: 2231714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of a protein and its surrounding environment: a quasielastic neutron scattering study of myoglobin in water and glycerol mixtures.
    Jansson H; Kargl F; Fernandez-Alonso F; Swenson J
    J Chem Phys; 2009 May; 130(20):205101. PubMed ID: 19485482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence of the amino acid side chain and backbone contributions to protein anharmonicity.
    Schiró G; Caronna C; Natali F; Cupane A
    J Am Chem Soc; 2010 Feb; 132(4):1371-6. PubMed ID: 20067251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level expression and deuteration of sperm whale myoglobin. A study of its solvent structure by X-ray and neutron diffraction methods.
    Shu F; Ramakrishnan V; Schoenborn BP
    Basic Life Sci; 1996; 64():309-23. PubMed ID: 9031516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics.
    Caronna C; Natali F; Cupane A
    Biophys Chem; 2005 Aug; 116(3):219-25. PubMed ID: 15908102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent protein dynamics: a simulation-based probabilistic diffusion-vibration Langevin description.
    Moritsugu K; Smith JC
    J Phys Chem B; 2006 Mar; 110(11):5807-16. PubMed ID: 16539528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation.
    Héry S; Genest D; Smith JC
    J Mol Biol; 1998 May; 279(1):303-19. PubMed ID: 9636718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A view of dynamics changes in the molten globule-native folding step by quasielastic neutron scattering.
    Bu Z; Neumann DA; Lee SH; Brown CM; Engelman DM; Han CC
    J Mol Biol; 2000 Aug; 301(2):525-36. PubMed ID: 10926525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein tertiary structural changes visualized by time-resolved X-ray solution scattering.
    Ahn S; Kim KH; Kim Y; Kim J; Ihee H
    J Phys Chem B; 2009 Oct; 113(40):13131-3. PubMed ID: 19757799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein boson peak originated from hydration-related multiple minima energy landscape.
    Joti Y; Kitao A; Go N
    J Am Chem Soc; 2005 Jun; 127(24):8705-9. PubMed ID: 15954776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering.
    Diehl M; Doster W; Petry W; Schober H
    Biophys J; 1997 Nov; 73(5):2726-32. PubMed ID: 9370466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.