BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8089839)

  • 21. Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering.
    Pieper J; Hauss T; Buchsteiner A; Baczyński K; Adamiak K; Lechner RE; Renger G
    Biochemistry; 2007 Oct; 46(40):11398-409. PubMed ID: 17867656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of the internal dynamics of two globular proteins from dry powder to solution.
    Pérez J; Zanotti JM; Durand D
    Biophys J; 1999 Jul; 77(1):454-69. PubMed ID: 10388771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Equilibrium fluctuations in myoglobin and lysozyme].
    Krupianskiĭ IuF; Esin SV; Mikhaĭliuk MG; Vetrov OD; Eshchenko GV
    Biofizika; 2004; 49(3):401-12. PubMed ID: 15327199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of hydration water on the dynamics of side chains of hydrophobic peptides: from dry powder to highly concentrated solutions.
    Russo D; Teixeira J; Ollivier J
    J Chem Phys; 2009 Jun; 130(23):235101. PubMed ID: 19548762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvent mobility and the protein 'glass' transition.
    Vitkup D; Ringe D; Petsko GA; Karplus M
    Nat Struct Biol; 2000 Jan; 7(1):34-8. PubMed ID: 10625424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structural dynamics of myoglobin.
    Brunori M; Bourgeois D; Vallone B
    J Struct Biol; 2004 Sep; 147(3):223-34. PubMed ID: 15450292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comment on "ultrafast dynamics of myoglobin without the distal histidine: stimulated vibrational echo experiments and molecular dynamics simulations".
    Goj A; Loring RF
    J Phys Chem B; 2007 Nov; 111(44):12938-9. PubMed ID: 17939707
    [No Abstract]   [Full Text] [Related]  

  • 28. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment.
    Lounnas V; Pettitt BM
    Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anharmonic motions of Kr in the clathrate hydrate.
    Tse JS; Klug DD; Zhao JY; Sturhahn W; Alp EE; Baumert J; Gutt C; Johnson MR; Press W
    Nat Mater; 2005 Dec; 4(12):917-21. PubMed ID: 16267573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pentameric and decameric structures in solution of serum amyloid P component by X-ray and neutron scattering and molecular modelling analyses.
    Ashton AW; Boehm MK; Gallimore JR; Pepys MB; Perkins SJ
    J Mol Biol; 1997 Sep; 272(3):408-22. PubMed ID: 9325100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methyl group dynamics and the onset of anharmonicity in myoglobin.
    Krishnan M; Kurkal-Siebert V; Smith JC
    J Phys Chem B; 2008 May; 112(17):5522-33. PubMed ID: 18399677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neutron scattering and protein dynamics.
    Frauenfelder H; Mezei F
    Acta Crystallogr D Biol Crystallogr; 2010 Nov; 66(Pt 11):1229-31. PubMed ID: 21041942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational heterogeneity and low-frequency vibrational modes of proteins.
    Balog E; Smith JC; Perahia D
    Phys Chem Chem Phys; 2006 Dec; 8(47):5543-8. PubMed ID: 17136269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydration dynamics and time scales of coupled water-protein fluctuations.
    Li T; Hassanali AA; Kao YT; Zhong D; Singer SJ
    J Am Chem Soc; 2007 Mar; 129(11):3376-82. PubMed ID: 17319669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kerma coefficients for neutron scattering on 12C and 16O at 96 MeV.
    Mermod P; Blomgren J; Nilsson L; Pomp S; Ohrn A; Osterlund M; Prokofiev A; Tippawan U
    Radiat Prot Dosimetry; 2007; 126(1-4):113-8. PubMed ID: 17575301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature-dependent structural and functional features of a hyperthermostable enzyme using elastic neutron scattering.
    Koutsopoulos S; van der Oost J; Norde W
    Proteins; 2005 Nov; 61(2):377-84. PubMed ID: 16106445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The low-temperature dynamic crossover phenomenon in protein hydration water: simulations vs experiments.
    Lagi M; Chu X; Kim C; Mallamace F; Baglioni P; Chen SH
    J Phys Chem B; 2008 Feb; 112(6):1571-5. PubMed ID: 18205352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulation of carboxy-myoglobin embedded in a trehalose-water matrix.
    Cottone G; Cordone L; Ciccotti G
    Biophys J; 2001 Feb; 80(2):931-8. PubMed ID: 11159460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.
    Papaleo E; Mereghetti P; Fantucci P; Grandori R; De Gioia L
    J Mol Graph Model; 2009; 27(8):889-99. PubMed ID: 19264523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced sampling by multiple molecular dynamics trajectories: carbonmonoxy myoglobin 10 micros A0-->A(1-3) transition from ten 400 picosecond simulations.
    Loccisano AE; Acevedo O; DeChancie J; Schulze BG; Evanseck JD
    J Mol Graph Model; 2004 May; 22(5):369-76. PubMed ID: 15099833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.