These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8090011)

  • 1. Interference by pH and Ca2+ ions during measurements of catecholamine release in slices of rat amygdala with fast-scan cyclic voltammetry.
    Jones SR; Mickelson GE; Collins LB; Kawagoe KT; Wightman RM
    J Neurosci Methods; 1994 Apr; 52(1):1-10. PubMed ID: 8090011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo voltammetric measurement of evoked extracellular dopamine in the rat basolateral amygdaloid nucleus.
    Garris PA; Wightman RM
    J Physiol; 1994 Jul; 478 ( Pt 2)(Pt 2):239-49. PubMed ID: 7965845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry.
    Smith AR; Garris PA; Casto JM
    J Chem Neuroanat; 2015; 66-67():28-39. PubMed ID: 25900708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct pharmacological regulation of evoked dopamine efflux in the amygdala and striatum of the rat in vivo.
    Garris PA; Wightman RM
    Synapse; 1995 Jul; 20(3):269-79. PubMed ID: 7570359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices.
    Burrell MH; Atcherley CW; Heien ML; Lipski J
    ACS Chem Neurosci; 2015 Nov; 6(11):1802-12. PubMed ID: 26322962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration.
    Venton BJ; Troyer KP; Wightman RM
    Anal Chem; 2002 Feb; 74(3):539-46. PubMed ID: 11838672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of dopamine uptake in the basolateral amygdaloid nucleus, caudate-putamen, and nucleus accumbens of the rat.
    Jones SR; Garris PA; Kilts CD; Wightman RM
    J Neurochem; 1995 Jun; 64(6):2581-9. PubMed ID: 7760038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of dopamine calibration factors on media Ca2+ and Mg2+ at carbon-fiber microelectrodes used with fast-scan cyclic voltammetry.
    Kume-Kick J; Rice ME
    J Neurosci Methods; 1998 Oct; 84(1-2):55-62. PubMed ID: 9821634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes.
    Qi L; Thomas E; White SH; Smith SK; Lee CA; Wilson LR; Sombers LA
    Anal Chem; 2016 Aug; 88(16):8129-36. PubMed ID: 27441547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting the basal extracellular dopamine concentrations from the evoked responses: re-analysis of the dopamine kinetics.
    Chen KC; Budygin EA
    J Neurosci Methods; 2007 Aug; 164(1):27-42. PubMed ID: 17498808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of dopamine overflow and uptake processes in the extracellular fluid of the rat caudate nucleus with fast-scan in vivo voltammetry.
    May LJ; Kuhr WG; Wightman RM
    J Neurochem; 1988 Oct; 51(4):1060-9. PubMed ID: 2971098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular dopamine dynamics in rat caudate-putamen during experimenter-delivered and intracranial self-stimulation.
    Kilpatrick MR; Rooney MB; Michael DJ; Wightman RM
    Neuroscience; 2000; 96(4):697-706. PubMed ID: 10727788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional differences in evoked dopamine efflux in brain slices of rat anterior and posterior caudate putamen.
    Patel J; Trout SJ; Kruk ZL
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Sep; 346(3):267-76. PubMed ID: 1407013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurement of oxygen and dopamine: coupling of oxygen consumption and neurotransmission.
    Kennedy RT; Jones SR; Wightman RM
    Neuroscience; 1992; 47(3):603-12. PubMed ID: 1316568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless Instantaneous Neurotransmitter Concentration System: electrochemical monitoring of serotonin using fast-scan cyclic voltammetry--a proof-of-principle study.
    Griessenauer CJ; Chang SY; Tye SJ; Kimble CJ; Bennet KE; Garris PA; Lee KH
    J Neurosurg; 2010 Sep; 113(3):656-65. PubMed ID: 20415521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin.
    O'Neill B; Patel JC; Rice ME
    ACS Chem Neurosci; 2017 Feb; 8(2):310-319. PubMed ID: 28177213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro.
    Rice ME; Cragg SJ; Greenfield SA
    J Neurophysiol; 1997 Feb; 77(2):853-62. PubMed ID: 9065854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area, and striatum.
    Cragg S; Rice ME; Greenfield SA
    J Neurophysiol; 1997 Feb; 77(2):863-73. PubMed ID: 9065855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time effects of N-methyl-D-aspartic acid on dopamine release in slices of rat caudate putamen: a study using fast cyclic voltammetry.
    Iravani MM; Kruk ZL
    J Neurochem; 1996 Mar; 66(3):1076-85. PubMed ID: 8769869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate-putamen.
    Venton BJ; Michael DJ; Wightman RM
    J Neurochem; 2003 Jan; 84(2):373-81. PubMed ID: 12558999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.