BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 8090432)

  • 41. Selective association of crystallins with lens 'native' membrane during dynamic cataractogenesis.
    Cenedella RJ; Fleschner CR
    Curr Eye Res; 1992 Aug; 11(8):801-15. PubMed ID: 1424724
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses.
    Tang D; Borchman D; Yappert MC; Vrensen GF; Rasi V
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2059-66. PubMed ID: 12714644
    [TBL] [Abstract][Full Text] [Related]  

  • 43. EM immunolocalization of alpha-crystallins: association with the plasma membrane from normal and cataractous human lenses.
    Boyle DL; Takemoto L
    Curr Eye Res; 1996 May; 15(5):577-82. PubMed ID: 8670759
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens.
    David LL; Azuma M; Shearer TR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Classification and protein distribution in a series of intracapsular cataracts.
    Zigman S; Schultz JB; Lowe K; Wolfe JK; Friend J
    Optom Vis Sci; 1993 Nov; 70(11):929-36. PubMed ID: 8302529
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular evidence for the involvement of alpha crystallin in the colouration/crosslinking of crystallins in age-related nuclear cataract.
    Chen YC; Reid GE; Simpson RJ; Truscott RJ
    Exp Eye Res; 1997 Dec; 65(6):835-40. PubMed ID: 9441707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Lens crystallin leakage in aqueous humor from human cataractous lenses].
    Kodama T
    Nippon Ganka Gakkai Zasshi; 1991 Nov; 95(11):1065-70. PubMed ID: 1759646
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the interaction of alpha-crystallin with membranes.
    Zhang WZ; Augusteyn RC
    Curr Eye Res; 1994 Mar; 13(3):225-30. PubMed ID: 8194371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Age-dependent deamidation of lifelong proteins in the human lens.
    Hains PG; Truscott RJ
    Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):3107-14. PubMed ID: 20053973
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens.
    Kodama T; Wolfe J; Chylack L; Smith J; Takemoto L
    Jpn J Ophthalmol; 1989; 33(1):114-9. PubMed ID: 2733253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus.
    Garlick RL; Mazer JS; Chylack LT; Tung WH; Bunn HF
    J Clin Invest; 1984 Nov; 74(5):1742-9. PubMed ID: 6438156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A covalent change in alpha crystallin during opacification of the Emory mouse lens.
    Takemoto L; Horwitz J; Kuck J; Kuck K
    Lens Eye Toxic Res; 1989; 6(3):431-41. PubMed ID: 2486937
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Racemization of aspartyl residues in proteins from normal and cataractous human lenses: an aging process without involvement in cataract formation.
    van den Oetelaar PJ; Hoenders HJ
    Exp Eye Res; 1989 Feb; 48(2):209-14. PubMed ID: 2924808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Age-related changes in human lens crystallins identified by HPLC and mass spectrometry.
    Ma Z; Hanson SR; Lampi KJ; David LL; Smith DL; Smith JB
    Exp Eye Res; 1998 Jul; 67(1):21-30. PubMed ID: 9702175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses.
    Garner MH; Spector A
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1274-7. PubMed ID: 6929483
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Towards a human crystallin map. Two-dimensional gel electrophoresis and computer analysis of water-soluble crystallins from normal and cataractous human lenses.
    Bloemendal H; Van de gaer K; Benedetti EL; Dunia I; Steely HT
    Ophthalmic Res; 1997; 29(4):177-90. PubMed ID: 9261842
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alpha crystallin from human cataractous vs. normal lenses: change in binding to lens membrane.
    Ifeanyi F; Takemoto L
    Exp Eye Res; 1990 Jan; 50(1):113-6. PubMed ID: 2307191
    [No Abstract]   [Full Text] [Related]  

  • 58. The effects of aging and cataract formation on the trypsin inhibitor activity of human lens.
    Srivastava OP; Ortwerth BJ
    Exp Eye Res; 1989 Jan; 48(1):25-36. PubMed ID: 2920782
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional and structural studies of alpha-crystallin from galactosemic rat lenses.
    Huang FY; Ho Y; Shaw TS; Chuang SA
    Biochem Biophys Res Commun; 2000 Jun; 273(1):197-202. PubMed ID: 10873586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Variations in the soluble alpha-crystallin proteins from human cataractous lenses.
    Alao JF
    Afr J Med Med Sci; 1978 Mar; 7(1):49-56. PubMed ID: 97955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.