BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8090755)

  • 1. Specific sequences from the carboxyl terminus of human p53 gene product form anti-parallel tetramers in solution.
    Sakamoto H; Lewis MS; Kodama H; Appella E; Sakaguchi K
    Proc Natl Acad Sci U S A; 1994 Sep; 91(19):8974-8. PubMed ID: 8090755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p53 domains: structure, oligomerization, and transformation.
    Wang P; Reed M; Wang Y; Mayr G; Stenger JE; Anderson ME; Schwedes JF; Tegtmeyer P
    Mol Cell Biol; 1994 Aug; 14(8):5182-91. PubMed ID: 8035799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical synthesis of phosphorylated peptides of the carboxy-terminal domain of human p53 by a segment condensation method.
    Sakamoto H; Kodama H; Higashimoto Y; Kondo M; Lewis MS; Anderson CW; Appella E; Sakaguchi K
    Int J Pept Protein Res; 1996 Nov; 48(5):429-42. PubMed ID: 8956076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms.
    Jeffrey PD; Gorina S; Pavletich NP
    Science; 1995 Mar; 267(5203):1498-502. PubMed ID: 7878469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain.
    Heering J; Jonker HR; Löhr F; Schwalbe H; Dötsch V
    Protein Sci; 2016 Feb; 25(2):410-22. PubMed ID: 26473758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of p53 DNA binding by c-Abl requires the p53 C terminus and tetramerization.
    Nie Y; Li HH; Bula CM; Liu X
    Mol Cell Biol; 2000 Feb; 20(3):741-8. PubMed ID: 10629029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific recognition of p53 tetramers by peptides derived from p53 interacting proteins.
    Gabizon R; Brandt T; Sukenik S; Lahav N; Lebendiker M; Shalev DE; Veprintsev D; Friedler A
    PLoS One; 2012; 7(5):e38060. PubMed ID: 22693587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transient manifold structure of the p53 extreme C-terminal domain: insight into disorder, recognition, and binding promiscuity by molecular dynamics simulations.
    Fadda E; Nixon MG
    Phys Chem Chem Phys; 2017 Aug; 19(32):21287-21296. PubMed ID: 28597880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants.
    Halazonetis TD; Kandil AN
    EMBO J; 1993 Dec; 12(13):5057-64. PubMed ID: 8262048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking.
    Stommel JM; Marchenko ND; Jimenez GS; Moll UM; Hope TJ; Wahl GM
    EMBO J; 1999 Mar; 18(6):1660-72. PubMed ID: 10075936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonpolar contributions to conformational specificity in assemblies of designed short helical peptides.
    Boon CL; Chakrabartty A
    Protein Sci; 2000 May; 9(5):1011-23. PubMed ID: 10850811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative binding of tetrameric p53 to DNA.
    Weinberg RL; Veprintsev DB; Fersht AR
    J Mol Biol; 2004 Aug; 341(5):1145-59. PubMed ID: 15321712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helicity of alpha(404-451) and beta(394-445) tubulin C-terminal recombinant peptides.
    Jimenez MA; Evangelio JA; Aranda C; Lopez-Brauet A; Andreu D; Rico M; Lagos R; Andreu JM; Monasterio O
    Protein Sci; 1999 Apr; 8(4):788-99. PubMed ID: 10211825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hetero-oligomerization does not compromise 'gain of function' of tumor-derived p53 mutants.
    Deb D; Scian M; Roth KE; Li W; Keiger J; Chakraborti AS; Deb SP; Deb S
    Oncogene; 2002 Jan; 21(2):176-89. PubMed ID: 11803461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation, equilibrium oligomerization, and molecular symmetry of the VASP (336-380) EVH2 tetramer.
    Zimmermann J; Labudde D; Jarchau T; Walter U; Oschkinat H; Ball LJ
    Biochemistry; 2002 Sep; 41(37):11143-51. PubMed ID: 12220179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stable human p53 heterotetramer based on constructive charge interactions within the tetramerization domain.
    Brokx RD; Bolewska-Pedyczak E; Gariépy J
    J Biol Chem; 2003 Jan; 278(4):2327-32. PubMed ID: 12433927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers.
    van Dieck J; Fernandez-Fernandez MR; Veprintsev DB; Fersht AR
    J Biol Chem; 2009 May; 284(20):13804-13811. PubMed ID: 19297317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor p53.
    Noolandi J; Davison TS; Volkel AR; Nie X; Kay C; Arrowsmith CH
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9955-60. PubMed ID: 10944184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding.
    Waterman JL; Shenk JL; Halazonetis TD
    EMBO J; 1995 Feb; 14(3):512-9. PubMed ID: 7859740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.