These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 8090775)
1. Creatine kinase (CK) in skeletal muscle energy metabolism: a study of mouse mutants with graded reduction in muscle CK expression. van Deursen J; Ruitenbeek W; Heerschap A; Jap P; ter Laak H; Wieringa B Proc Natl Acad Sci U S A; 1994 Sep; 91(19):9091-5. PubMed ID: 8090775 [TBL] [Abstract][Full Text] [Related]
2. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. van Deursen J; Heerschap A; Oerlemans F; Ruitenbeek W; Jap P; ter Laak H; Wieringa B Cell; 1993 Aug; 74(4):621-31. PubMed ID: 8358791 [TBL] [Abstract][Full Text] [Related]
3. Approaching the multifaceted nature of energy metabolism: inactivation of the cytosolic creatine kinases via homologous recombination in mouse embryonic stem cells. van Deursen J; Wieringa B Mol Cell Biochem; 1994; 133-134():263-74. PubMed ID: 7808458 [TBL] [Abstract][Full Text] [Related]
4. Effects of ischemia on skeletal muscle energy metabolism in mice lacking creatine kinase monitored by in vivo 31P nuclear magnetic resonance spectroscopy. in 't Zandt HJ; Oerlemans F; Wieringa B; Heerschap A NMR Biomed; 1999 Oct; 12(6):327-34. PubMed ID: 10516614 [TBL] [Abstract][Full Text] [Related]
5. Effects of the creatine analogue beta-guanidinopropionic acid on skeletal muscles of mice deficient in muscle creatine kinase. van Deursen J; Jap P; Heerschap A; ter Laak H; Ruitenbeek W; Wieringa B Biochim Biophys Acta; 1994 May; 1185(3):327-35. PubMed ID: 8180237 [TBL] [Abstract][Full Text] [Related]
6. From energy store to energy flux: a study in creatine kinase-deficient fast skeletal muscle. Kaasik A; Veksler V; Boehm E; Novotova M; Ventura-Clapier R FASEB J; 2003 Apr; 17(6):708-10. PubMed ID: 12586739 [TBL] [Abstract][Full Text] [Related]
7. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation. Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles. Possible role in rescuing cellular energy homeostasis. ter Veld F; Jeneson JA; Nicolay K FEBS J; 2005 Feb; 272(4):956-65. PubMed ID: 15691329 [TBL] [Abstract][Full Text] [Related]
9. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020 [TBL] [Abstract][Full Text] [Related]
10. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart. Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466 [TBL] [Abstract][Full Text] [Related]
11. Absence of myofibrillar creatine kinase and diaphragm isometric function during repetitive activation. LaBella JJ; Daood MJ; Koretsky AP; Roman BB; Sieck GC; Wieringa B; Watchko JF J Appl Physiol (1985); 1998 Apr; 84(4):1166-73. PubMed ID: 9516180 [TBL] [Abstract][Full Text] [Related]
12. Fluxes through cytosolic and mitochondrial creatine kinase, measured by P-31 NMR. van Dorsten FA; Reese T; Gellerich JF; van Echteld CJ; Nederhoff MG; Muller HJ; van Vliet G; Nicolay K Mol Cell Biochem; 1997 Sep; 174(1-2):33-42. PubMed ID: 9309663 [TBL] [Abstract][Full Text] [Related]
13. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions. Gorselink M; Drost MR; van der Vusse GJ Pflugers Arch; 2001 Nov; 443(2):274-9. PubMed ID: 11713654 [TBL] [Abstract][Full Text] [Related]
14. Altering creatine kinase isoenzymes in transgenic mouse muscle by overexpression of the B subunit. Brosnan MJ; Raman SP; Chen L; Koretsky AP Am J Physiol; 1993 Jan; 264(1 Pt 1):C151-60. PubMed ID: 8430764 [TBL] [Abstract][Full Text] [Related]
15. Functional equivalence of creatine kinase isoforms in mouse skeletal muscle. Roman BB; Wieringa B; Koretsky AP J Biol Chem; 1997 Jul; 272(28):17790-4. PubMed ID: 9211932 [TBL] [Abstract][Full Text] [Related]
16. Creatine kinase in non-muscle tissues and cells. Wallimann T; Hemmer W Mol Cell Biochem; 1994; 133-134():193-220. PubMed ID: 7808454 [TBL] [Abstract][Full Text] [Related]
17. Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice. Dzeja PP; Terzic A; Wieringa B Mol Cell Biochem; 2004; 256-257(1-2):13-27. PubMed ID: 14977167 [TBL] [Abstract][Full Text] [Related]
18. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence. Echegaray M; Rivera MA Sports Med; 2001; 31(13):919-34. PubMed ID: 11708401 [TBL] [Abstract][Full Text] [Related]
19. Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies. Steeghs K; Oerlemans F; de Haan A; Heerschap A; Verdoodt L; de Bie M; Ruitenbeek W; Benders A; Jost C; van Deursen J; Tullson P; Terjung R; Jap P; Jacob W; Pette D; Wieringa B Mol Cell Biochem; 1998 Jul; 184(1-2):183-94. PubMed ID: 9746321 [TBL] [Abstract][Full Text] [Related]
20. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice. Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]