These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 8091010)
1. Augmentation of calcium influx by stannous chloride at mouse motor nerve terminals. Hattori T; Maehashi H Res Commun Chem Pathol Pharmacol; 1994 May; 84(2):253-6. PubMed ID: 8091010 [TBL] [Abstract][Full Text] [Related]
2. Evidence for enhancement of calcium inward current by stannous chloride at frog motor nerve terminals. Hattori T; Maehashi H Res Commun Chem Pathol Pharmacol; 1990 Sep; 69(3):369-72. PubMed ID: 2173086 [TBL] [Abstract][Full Text] [Related]
3. Interaction between stannous chloride and calcium channel blockers in frog neuromuscular transmission. Hattori T; Maehashi H Res Commun Chem Pathol Pharmacol; 1992 Feb; 75(2):243-6. PubMed ID: 1315065 [TBL] [Abstract][Full Text] [Related]
4. Facilitation of transmitter release from mouse motor nerve terminals by stannous chloride. Hattori T; Maehashi H Res Commun Chem Pathol Pharmacol; 1993 Oct; 82(1):121-4. PubMed ID: 7903812 [TBL] [Abstract][Full Text] [Related]
5. Activation of N-type calcium channels by stannous chloride at frog motor nerve terminals. Hattori T; Maehashi H Res Commun Chem Pathol Pharmacol; 1991 Oct; 74(1):125-8. PubMed ID: 1666197 [TBL] [Abstract][Full Text] [Related]
6. Potentiation by stannous chloride of calcium entry into osteoblastic MC3T3-E1 cells through voltage-dependent L-type calcium channels. Hattori T; Maehashi H; Miyazawa T; Naito M Cell Calcium; 2001 Jul; 30(1):67-72. PubMed ID: 11396989 [TBL] [Abstract][Full Text] [Related]
7. Participation of calcium ions in stannous chloride-induced facilitation of transmitter release from frog motor nerve terminals. Hattori T; Maehashi H Res Commun Chem Pathol Pharmacol; 1990 May; 68(2):267-70. PubMed ID: 1972290 [TBL] [Abstract][Full Text] [Related]
8. Stannous chloride-induced increase in calcium entry into motor nerve terminals of the frog. Hattori T; Maehashi H Eur J Pharmacol; 1989 Aug; 166(3):527-30. PubMed ID: 2572431 [TBL] [Abstract][Full Text] [Related]
9. Mechanisms of ATP action on motor nerve terminals at the frog neuromuscular junction. Grishin S; Shakirzyanova A; Giniatullin A; Afzalov R; Giniatullin R Eur J Neurosci; 2005 Mar; 21(5):1271-9. PubMed ID: 15813936 [TBL] [Abstract][Full Text] [Related]
10. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction. Katz E; Protti DA; Ferro PA; Rosato Siri MD; Uchitel OD Br J Pharmacol; 1997 Aug; 121(8):1531-40. PubMed ID: 9283685 [TBL] [Abstract][Full Text] [Related]
11. [Calcium and calcium-activated potassium currents of motor nerve endings in the frog]. Zefirov AL; Khalilov IA; Khamitov KhS Neirofiziologiia; 1987; 19(4):467-73. PubMed ID: 2443860 [TBL] [Abstract][Full Text] [Related]
12. Facilitation by 3,4-diaminopyridine of regenerative acetylcholine release from mouse motor nerve. Hong SJ; Chang CC Br J Pharmacol; 1990 Dec; 101(4):793-8. PubMed ID: 1964819 [TBL] [Abstract][Full Text] [Related]
13. Functional assessment of Ca(2+)-current in the mouse motor nerve terminals. Lin MJ; Lin-Shiau SY Neurosci Lett; 1995 Jul; 195(1):21-4. PubMed ID: 7478245 [TBL] [Abstract][Full Text] [Related]
14. Role of K+ channels in regulating spontaneous activity in detrusor smooth muscle in situ in the mouse bladder. Hayase M; Hashitani H; Kohri K; Suzuki H J Urol; 2009 May; 181(5):2355-65. PubMed ID: 19303094 [TBL] [Abstract][Full Text] [Related]
15. Effect of Pinellia ternata lectin on membrane currents of mouse motor nerve terminals. Shi YL; Xu YF; Zhang H Sci China B; 1994 Apr; 37(4):448-53. PubMed ID: 8068197 [TBL] [Abstract][Full Text] [Related]
16. Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals. Ouyang W; Hemmings HC J Pharmacol Exp Ther; 2005 Feb; 312(2):801-8. PubMed ID: 15375177 [TBL] [Abstract][Full Text] [Related]
17. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals. Ladera C; Martín R; Bartolomé-Martín D; Torres M; Sánchez-Prieto J Eur J Neurosci; 2009 Mar; 29(6):1131-40. PubMed ID: 19302149 [TBL] [Abstract][Full Text] [Related]
18. Ruthenium red, a novel enhancer of K+ currents at mouse motor nerve terminals. Lin MJ; Lin-Shiau SY Neuropharmacology; 1996 May; 35(5):615-23. PubMed ID: 8887970 [TBL] [Abstract][Full Text] [Related]
19. Fluoxetine inhibits calcium-activated currents of salamander rod photoreceptor somata and presynaptic terminals via modulation of intracellular calcium dynamics. Steele EC; Chen X; MacLeish PR Mol Vis; 2005 Dec; 11():1200-10. PubMed ID: 16402020 [TBL] [Abstract][Full Text] [Related]
20. Effects of various K+ channel blockers on spontaneous glycine release at rat spinal neurons. Shoudai K; Nonaka K; Maeda M; Wang ZM; Jeong HJ; Higashi H; Murayama N; Akaike N Brain Res; 2007 Jul; 1157():11-22. PubMed ID: 17555723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]